Study of the Density of Interface States at the Insulator/In0.52Al0.48As Interface

Abstract

The CV characteristics of Au/Al2O3/In0.52Al0.48As and Au/SiO2/In0.52Al0.48As metal–insulator–semiconductor structures have been studied. It has been established that the fragmentary measurement of the CV characteristics of InAlAs-based metal–insulator–semiconductor structures, in contrast standard registration method to at a constant voltage sweep rate, significantly weakens the effect of the hysteresis phenomena and allows one to record stationary curves. It is shown that the density of fast interface states calculated by the Terman method from such CV characteristics slightly changes over the InAlAs band gap and amounts to (3–6) × 1011 and (1–3) × 1011 eV–1 cm–2 for MIS structures with Al2O3 and SiO2, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    T. Takahashi, Y. Kawano, K. Makiyama, S. Shiba, M. Sato, Y. Nakasha, and N. Hara, IEEE Trans. Electron Dev. 64, 89 (2017). https://doi.org/10.1109/TED.2016.2624899

    ADS  Article  Google Scholar 

  2. 2

    M. S. Aksenov, N. A. Valisheva, I. B. Chistokhin, D. V. Dmitriev, A. S. Kozhukhov, and K. S. Zhuravlev, Appl. Phys. Lett. 114, 221602 (2019). https://doi.org/10.1063/1.5091598

    ADS  Article  Google Scholar 

  3. 3

    N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, Jr., and J. C. Campbell, Appl. Phys. Lett. 82, 2175 (2003). https://doi.org/10.1063/1.1559437

    ADS  Article  Google Scholar 

  4. 4

    N. I. Yakovleva, K. O. Boltar’, M. V. Sednev, A. A. Lopukhin, and E. D. Korotaev, Prikl. Fiz., No. 1, 87 (2015).

  5. 5

    N. N. Berchenko and Yu. V. Medvedev, Russ. Chem. Rev. 63, 623 (1994). https://doi.org/10.1070/RC1994v063n08ABEH000108

    ADS  Article  Google Scholar 

  6. 6

    J. Robertson, Appl. Phys. Lett. 94, 152104 (2009). https://doi.org/10.1063/1.3120554

    ADS  Article  Google Scholar 

  7. 7

    M. Houssa, M. Scarrozza, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Appl. Phys. Lett. 98, 141901 (2011). https://doi.org/10.1063/1.3575559

    ADS  Article  Google Scholar 

  8. 8

    M. Kobayashi, G. Thareja, Y. Sun, N. Goel, M. Garner, W. Tsai, P. Pianetta, and Y. Nishi, Appl. Phys. Lett. 96, 142906 (2010). https://doi.org/10.1063/1.3379024

    ADS  Article  Google Scholar 

  9. 9

    B. Brennan, R. V. Galatage, K. Thomas, E. Pelucchi, P. K. Hurley, J. Kim, C. L. Hinkle, E. M. Vogel, and R. M. Wallace, J. Appl. Phys. 114, 104103 (2013). https://doi.org/10.1063/1.4821021

    ADS  Article  Google Scholar 

  10. 10

    G. He, H.-H. Lv, G. Hui, Y.-M. Zh, Y.-M. Zh, and L.‑F. Wu, Chin. Phys. B 24, 126701 (2015). https://doi.org/10.1088/1674-1056/24/12/126701

    ADS  Article  Google Scholar 

  11. 11

    L.-F. Wu, Y.-M. Zhang, H.-L. Lv, and Y.-M. Zhang, Chin. Phys. B 25, 108101 (2016). https://doi.org/10.1088/1674-1056/25/10/108101

    ADS  Article  Google Scholar 

  12. 12

    Infrared Matrix Photodetectors, Ed. by S. P. Sinitsa (Nauka, Novosibirsk, 2001), p. 10 [in Russian].

    Google Scholar 

  13. 13

    A. P. Kovchavtsev, A. V. Tsarenko, A. A. Guzev, M. S. Aksenov, V. G. Polovinkin, A. E. Nastovjak, and N. A. Valisheva, J. Appl. Phys. 118, 125704 (2015). https://doi.org/10.1063/1.4931772

    ADS  Article  Google Scholar 

  14. 14

    A. P. Kovchavtsev, G. Y. Sidorov, A. E. Nastovjak, A. V. Tsarenko, I. V. Sabinina, and V. V. Vasilyev, J. Appl. Phys. 121, 125304 (2017). https://doi.org/10.1063/1.4978967

    ADS  Article  Google Scholar 

  15. 15

    T. Nakagawa and H. Fujisada, Appl. Phys. Lett. 31, 348 (1977). https://doi.org/10.1063/1.89695

    ADS  Article  Google Scholar 

  16. 16

    L. M. Terman, Solid-State Electron. 5, 285 (1962). https://doi.org/10.1016/0038-1101(62)90111-9

    ADS  Article  Google Scholar 

  17. 17

    H.-D. Trinh, E. Y. Chang, Y.-Y. Wong, C.-C. Yu, C.-Y. Chang, Y.-C. Lin, H. -Q. Nguyen, and B.-T. Tran, Jpn. J. Appl. Phys. 49, 111201 (2010). https://doi.org/10.1143/JJAP.49.111201

    ADS  Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-32-00548.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. S. Aksenov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovchavtsev, A.P., Aksenov, M.S., Nastov’yak, A.E. et al. Study of the Density of Interface States at the Insulator/In0.52Al0.48As Interface. Tech. Phys. Lett. 46, 469–472 (2020). https://doi.org/10.1134/S1063785020050259

Download citation

Keywords:

  • In0.52Al0.48As
  • insulator
  • CV characteristic
  • density of interface states.