Heterostructures of Quantum-Cascade Laser for the Spectral Range of 4.6 μm for Obtaining a Continuous-Wave Lasing Mode

Abstract

The method of molecular-beam epitaxy was used to fabricate an elastically balanced heterostructure of a quantum-cascade laser for the spectral range of 4.6 μm based on a heteropair of solid alloys, In0.67Ga0.33As/In0.36Al0.64As, and indium phosphide layers serving as waveguide cladding layers. An X-ray diffraction analysis demonstrated the high uniformity of the composition and thickness of layers in cascades of the heterostructure over the substrate area. Lasers with four cleaved facets show lasing at room temperature at a wavelength close to 4.6 μm with a comparatively low threshold current density of 1.1 kA/cm2.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    A. Lyakh, R. Maulini, A. Tsekoun, and R. Go, Proc. Natl. Acad. Sci. U. S. A. 107, 18799 (2010). https://doi.org/10.1073/pnas.1013250107

    ADS  Article  Google Scholar 

  2. 2

    M. Suttinger, R. Kaspi, and A. Lyakh, in Mid-Infrared Optoelectronics: Materials, Devices, and Applications (Woodhead, Cambridge, UK, 2020). https://doi.org/10.1016/b978-0-08-102709-7.00005-x

  3. 3

    A. Yu. Egorov, A. V. Babichev, L. Ya. Karachinsky, I. I. Novikov, E. V. Nikitina, M. Tchernycheva, A. N. Sofronov, D. A. Firsov, L. E. Vorob’ev, N. A. Pikhtin, and I. S. Tarasov, Semiconductors 49, 1527 (2015). https://doi.org/10.1134/s106378261511007x

    ADS  Article  Google Scholar 

  4. 4

    M. Razeghi, W. Zhou, S. Slivken, Q.-Y. Lu, D. Wu, and R. McClintock, Appl. Opt. 56 (31), H30 (2017). https://doi.org/10.1364/ao.56.000h30

    Article  Google Scholar 

  5. 5

    D. Botez, J. D. Kirch, C. Boyle, K. M. Oresick, C. Sigler, H. Kim, B. B. Knipfer, J. H. Ryu, D. Lindberg, T. Earles, L. J. Mawst, and Y. V. Flores, Opt. Mater. Express 8, 1378 (2018). https://doi.org/10.1364/ome.8.001378

    ADS  Article  Google Scholar 

  6. 6

    A. V. Babichev, A. G. Gladyshev, A. S. Kurochkin, E. S. Kolodeznyi, G. S. Sokolovskii, V. E. Bougrov, L. Ya. Karachinsky, I. I. Novikov, A. Bousseksou, and A. Yu. Egorov, Semiconductors 52, 1082 (2018). https://doi.org/10.1134/s1063782618080031

    ADS  Article  Google Scholar 

  7. 7

    A. V. Babichev, A. S. Kurochkin, E. S. Kolodeznyi, A. V. Filimonov, A. A. Usikova, V. N. Nevedomsky, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, A. Yu. Egorov, and D. V. Denisov, Semiconductors 52, 745 (2018). https://doi.org/10.1134/s1063782618060039

    ADS  Article  Google Scholar 

  8. 8

    A. V. Babichev, G. A. Gusev, A. N. Sofronov, D. A. Firsov, L. E. Vorob’ev, A. A. Usikova, Yu. M. Zadiranov, N. D. Il’inskaya, V. N. Nevedomskii, V. V. Dyudelev, G. S. Sokolovskii, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, and A. Yu. Egorov, Tech. Phys. 63, 1511 (2018). https://doi.org/10.1134/s1063784218100043

    Article  Google Scholar 

  9. 9

    D. Hofstetter, M. Beck, T. Aellen, and J. Faist, Appl. Phys. Lett. 78, 396 (2001).https://doi.org/10.1063/1.1340865

    ADS  Article  Google Scholar 

  10. 10

    A. V. Babichev, A. G. Gladyshev, D. V. Denisov, L. Ya. Karachinsky, I. I. Novikov, L. Boulley, A. Bousseksou, N. A. Pikhtin, and A. Yu. Egorov, Opt. Spectrosc. 127, 279 (2019). https://doi.org/10.1134/s0030400x19080058

    ADS  Article  Google Scholar 

  11. 11

    S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, and M. Razeghi, Appl. Phys. Lett. 74, 173 (1999). https://doi.org/10.1063/1.123284

    ADS  Article  Google Scholar 

  12. 12

    A. V. Babichev, A. G. Gladyshev, A. V. Filimonov, V. N. Nevedomskii, A. S. Kurochkin, E. S. Kolodeznyi, G. S. Sokolovskii, V. E. Bugrov, L. Ya. Karachinskii, I. I. Novikov, A. Bousseksou, and A. Yu. Egorov, Tech. Phys. Lett. 43, 666 (2017). https://doi.org/10.1134/s1063785017070173

    ADS  Article  Google Scholar 

  13. 13

    A. V. Babichev, A. G. Gladyshev, A. S. Kurochkin, E. S. Kolodeznyi, V. N. Nevedomskii, L. Ya. Karachinsky, I. I. Novikov, A. N. Sofronov, and A. Yu. Egorov, Semiconductors 53, 345 (2019). https://doi.org/10.1134/s1063782619030023

    ADS  Article  Google Scholar 

  14. 14

    V. V. Dyudelev, S. N. Losev, V. Yu. Myl’nikov, A. V. Babichev, E. A. Kognovitskaya, S. O. Slipchenko, A. V. Lyutetskii, N. A. Pikhtin, A. G. Gladyshev, L. Ya. Kara-chinskii, I. I. Novikov, A. Yu. Egorov, V. I. Kuchinskii, and G. S. Sokolovskii, Opt. Spectrosc. 125, 402 (2018). https://doi.org/10.1134/s0030400x18090096

    ADS  Article  Google Scholar 

  15. 15

    A. V. Babichev, D. A. Pashnev, A. G. Gladyshev, A. S. Kurochkin, E. S. Kolodeznyi, L. Ya. Karachinskii, I. I. Novikov, D. V. Denisov, V. V. Dyudelev, D. A. Firsov, L. E. Vorob’ev, S. O. Slipchenko, A. V. Lyutetskii, N. A. Pikhtin, and A. Yu. Egorov, Opt. Spectrosc. (in press).

  16. 16

    A. V. Babichev, A. G. Gladyshev, E. S. Kolodeznyi, A. S. Kurochkin, G. S. Sokolovskii, V. E. Bougrov, L. Ya. Karachinsky, I. I. Novikov, V. V. Dudelev, V. N. Nevedomsky, S. O. Slipchenko, A. V. Lutetskiy, A. N. Sofronov, D. A. Firsov, L. E. Vorobjev, and N. A. Pikhtin, J. Phys.: Conf. Ser. 1124, 041029 (2018). https://doi.org/10.1088/1742-6596/1124/4/041029

    Article  Google Scholar 

  17. 17

    V. V. Dudelev, D. A. Mikhailov, A. V. Babichev, A. D. Andreev, S. N. Losev, E. A. Kognovitskaya, Yu. K. Bobretsova, S. O. Slipchenko, N. A. Pikhtin, A. G. Gladyshev, D. V. Denisov, I. I. Novikov, L. Ya. Karachinsky, V. I. Kuchinskii, A. Yu. Egorov, and G. S. Sokolovskii, Quantum Electron. 50, 141 (2020). https://doi.org/10.1070/QEL17168

    ADS  Article  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation, unique project identifier RFMEFI60719X0318.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Babichev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babichev, A.V., Gladyshev, A.G., Dudelev, V.V. et al. Heterostructures of Quantum-Cascade Laser for the Spectral Range of 4.6 μm for Obtaining a Continuous-Wave Lasing Mode. Tech. Phys. Lett. 46, 442–445 (2020). https://doi.org/10.1134/S1063785020050028

Download citation

Keywords:

  • superlattices
  • quantum-cascade laser
  • epitaxy
  • indium phosphide.