Skip to main content
Log in

The Electric Conductivity of Nanofluids with Metal Particles

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The electric conductivity is experimentally studied in nanofluids based on water and ethylene glycol containing copper and aluminum particles. Other properties, such as heat conductivity and rheological characteristics, were evaluated as well. The electric conductivity of nanofluids is shown to increase almost linearly with a nanoparticle concentration, but, unlike the heat conductivity, a gain in electric conductivity is due to a decrease in particle size. In this respect, the mechanisms of electric conductivity and heat conductivity are assumed to have the fundamentally different nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. Ya. Rudyak and A. V. Minakov, Current Problems of Micro- and Nanofluidics (Nauka, Novosibirsk, 2016) [in Russian].

    Google Scholar 

  2. E. V. Timofeeva, D. S. Smith, and W. Yu, Nanotecnology 21, 215703 (2010).

    Article  ADS  Google Scholar 

  3. V. Ya. Rudyak and S. L. Krasnolutskii, Tech. Phys. 60, 798 (2015).

    Article  Google Scholar 

  4. D. K. Devendiran and V. A. Amirtham, Renewable Sustainable Energy Rev. 60, 21 (2016).

    Article  Google Scholar 

  5. P. K. Das, N. Islam, A. K. Santra, and R. Ganguly, J. Mol. Liq. 237, 304 (2017).

    Article  Google Scholar 

  6. V. Rudyak and A. V. Minakov, Eur. Phys. J. E 41, 15 (2018).

    Article  Google Scholar 

  7. V. Ya. Rudyak and S. L. Krasnolutskii, Tech. Phys. 62, 1456 (2017).

    Article  Google Scholar 

  8. M. I. Pryazhnikov, A. V. Minakov, V. Rudyak, and D. V. Guzei, Int. J. Heat Mass Transfer 104, 1275 (2017).

    Article  Google Scholar 

  9. J. M. Munyalo and X. Zhang, J. Mol. Liq. 265, 77 (2018).

    Article  Google Scholar 

  10. A. Einstein, Ann. Phys. 19, 289 (1906).

    Article  Google Scholar 

  11. G. K. Batchelor, J. Fluid Mech. 83, 97 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford, 1881).

    MATH  Google Scholar 

  13. M. Dong, L. P. Shen, H. Wang, H. B. Wang, and J. Miao, J. Nanomater. 2013, 842963 (2013).

    Article  Google Scholar 

  14. K. G. Kalpana Sarojini, S. V. Manoj, P. K. Singh, and T. Predeep, Coll. Surf., A 417, 39 (2013).

  15. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).

    Article  ADS  Google Scholar 

  16. A. V. Minakov, V. Ya. Rudyak, D. V. Guzei, M. I. Pryazhnikov, and A. S. Lobasov, J. Eng. Phys. Thermophys. 88 (1), 149 (2015).

    Article  Google Scholar 

  17. V. Ya. Rudyak, A. A. Belkin, E. A. Tomilina, and V. V. Egorov, Def. Diff. Forum 273–276, 566 (2008).

    Google Scholar 

  18. H. Tabuteau, F. K. Oppong, J. R. de Bruyn, and P. Coussot, Europhys. Lett. 78, 68007 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Rudyak.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudyak, V.Y., Minakov, A.V. & Pryazhnikov, M.I. The Electric Conductivity of Nanofluids with Metal Particles. Tech. Phys. Lett. 45, 457–460 (2019). https://doi.org/10.1134/S1063785019050134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785019050134

Navigation