Skip to main content
Log in

The Formation of Elastoplastic Fronts and Spall Fracture in AMg6 Alloy under Shock-Wave Loading

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Full wave profiles were monitored by the laser interferometry method by means of a VISAR laser Doppler velocimeter under shock-wave loading of samples of AMg6 aluminum alloy. Analysis of these profiles was used to study the laws of elastic precursor formation and its amplitude variation during elastic–plastic transition front propagation in samples loaded by a shock wave of variable intensity. Critical stresses leading to the spall fracture of samples were determined as dependent on the strain rate under unloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kok, M. S. Bharathi, A. J. Beaudoin, C. Fressengeas, G. Ananthakrishna, L. P. Kubin, and M. Lebyodkin, Acta Mater. 51, 3651 (2003).

    Article  Google Scholar 

  2. C. Froustey, O. Naimark, M. Bannikov, and V. Oborin, Eur. J. Mech. A 29, 1008 (2010).

    Article  Google Scholar 

  3. G. I. Kanel, S. V. Razorenov, and V. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).

    Book  Google Scholar 

  4. G. I. Kanel, S. V. Razorenov, and G. V. Garkushin, J. Appl. Phys. 119, 185903 (2016).

    Article  ADS  Google Scholar 

  5. E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 112, 073504 (2012).

    Article  ADS  Google Scholar 

  6. E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 120, 105901 (2016).

    Article  ADS  Google Scholar 

  7. T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer, New York, 2003).

    Google Scholar 

  8. A. D. Volkov, A. I. Kokshaiskii, A. I. Korobov, and V. M. Prokhorov, Acoust. Phys. 61, 651 (2015).

    Article  ADS  Google Scholar 

  9. J. R. Asay and L. M. Barker, J. Appl. Phys. 45, 2540 (1974).

    Article  ADS  Google Scholar 

  10. O. B. Naimark, JETP Lett. 67, 714 (1998).

    Article  Google Scholar 

  11. O. B. Naimark, J. Phys. IV (France) 134, 3 (2006).

    Article  Google Scholar 

  12. O. B. Naimark, Yu. V. Bayandin, and M. A. Zocher, Phys. Mesomech. 20, 10 (2017).

    Article  Google Scholar 

  13. O. B. Naimark, in Advances in Multifield Theories of Continua with Substructure, Ed. by G. Capriz and P. Mariano (Birkhauser, Boston, 2004), p. 75.

  14. S. V. Razorenov, G. I. Kanel’, and V. E. Fortov, Phys. Met. Metallogr. 95, 86 (2003).

    Google Scholar 

  15. N. V. Saveleva, Yu. V. Bayandin, A. S. Savinykh, G. V. Garkushin, E. A. Lyapunova, S. V. Razorenov, and O. B. Naimark, Tech. Phys. Lett. 41, 579 (2015).

    Article  ADS  Google Scholar 

  16. Yu. Bayandin, N. Saveleva, and O. B. Naimark, Interfacial Phenom. Heat Transfer 5, 129 (2017).

    Article  Google Scholar 

  17. G. I. Kanel’, S. V. Razorenov, and V. E. Fortov, Prikl. Mekh. Tekh. Fiz., No. 5, 60 (1984).

    Google Scholar 

  18. N. A. Zlatin, G. S. Pugachev, E. N. Bellendir, and E. L. Zil’berbrand, Sov. Tech. Phys. 29, 469 (1984).

    Google Scholar 

  19. O. B. Naimark, Int. J. Fract. 202, 271 (2016).

    Article  Google Scholar 

  20. O. B. Belyaev and O. B. Naimark, Sov. Phys. Dokl. 35, 436 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Saveleva.

Additional information

Original Russian Text © N.V. Saveleva, Yu.V. Bayandin, A.S. Savinykh, G.V. Garkushin, S.V. Razorenov, O.B. Naimark, 2018, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 44, No. 18, pp. 39–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saveleva, N.V., Bayandin, Y.V., Savinykh, A.S. et al. The Formation of Elastoplastic Fronts and Spall Fracture in AMg6 Alloy under Shock-Wave Loading. Tech. Phys. Lett. 44, 823–826 (2018). https://doi.org/10.1134/S1063785018090286

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785018090286

Navigation