Peculiarities of Silicon-Donor Ionization and Electron Scattering in Pseudomorphous AlGaAs/InGaAs/GaAs Quantum Wells with Heavy Unilateral Delta-Doping
- 3 Downloads
Abstract
The influence of the concentration of silicon donors on the electron-transport properties of pseudomorphous Al0.25Ga0.75As/In0.2Ga0.8As/GaAs quantum wells (QWs) in heterostructures with heavy unilateral δ-doping by Si atoms was studied in a broad temperature interval (2.1–300 K). High electron mobility (up to 35700 cm2/(V s)) at T = 4.2 K was observed at a 2D (sheet) electron density of 2 × 1012 cm–2 in the QW. A band mechanism limiting the ionization of donors at an increased level of doping is described. The nonmonotonic variation of electron mobility with increasing silicon concentration is explained. A growth in the mobility is related to increase in the Fermi momentum and screening, while the subsequent decay is caused by tunneling-induced degradation of the spacer layer with decreasing potential of the conduction band in the region of δ-Si layer. It is shown that the effect is not related to filling of the upper subband of dimensional quantization.
Preview
Unable to display preview. Download preview PDF.
References
- 1.H. Ohno, J. K. Luo, K. Matsuzaki, and H. Hasegawa, Appl. Phys. Lett. 54, 36 (1989).ADSCrossRefGoogle Scholar
- 2.M. G. Greally, M. Hayne, A. Usher, G. Hill, and M. Hopkinson, J. Appl. Phys. 79, 8465 (1996).ADSCrossRefGoogle Scholar
- 3.Y. Cordier, P. Lorenzini, J.-M. Chauveau, D. Ferre, Y. Androussi, J. DiPersio, D. Vignaud, and J.-L. Codron, J. Cryst. Growth 251, 822 (2003).ADSCrossRefGoogle Scholar
- 4.E. Litwin-Staszewska, T. Suski, C. Skierbiszewski, F. Kobbi, J. L. Robert, and V. Mosser, J. Appl. Phys. 77, 405 (1995).ADSCrossRefGoogle Scholar
- 5.I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, V. G. Mokerov, S. S. Shirokov, R. M. Imamov, and I. A. Subbotin, Semiconductors 42, 1084 (2008).ADSCrossRefGoogle Scholar
- 6.A. Babinski, J. Siwiec-Matuszyk, J. M. Baranowski, G. Li, and C. Jagadish, Appl. Phys. Lett. 77, 999 (2000).ADSCrossRefGoogle Scholar
- 7.E. A. B. Cole, T. Boettcher, and C. M. Snowden, Semicond. Sci. Technol. 12, 100 (1997).ADSCrossRefGoogle Scholar
- 8.V. V. Vainberg, A. S. Pylypchuk, N. V. Baidus, and B. N. Zvonkov, Semicond. Phys. Quantum Electron. Optoelectron. 16, 152 (2013).CrossRefGoogle Scholar
- 9.C. Kadow, H.-K. Lin, M. Dahlstrom, M. Rodwell, A. C. Gossard, B. Brar, and G. Sullivan, J. Cryst. Growth 251, 543 (2003).ADSCrossRefGoogle Scholar
- 10.T. Ishikawa, J. Saito, S. Sasa, and S. Hiyamizu, Jpn. J. Appl. Phys. 21, L675 (1982).ADSCrossRefGoogle Scholar
- 11.E. F. Schubert and K. Ploog, Phys. Rev. B 30, 7021 (1984).ADSCrossRefGoogle Scholar
- 12.V. A. Kulbachinskii, I. S. Vasil’evskii, R. A. Lunin, G. Galistu, A. de Visser, G. B. Galiev, S. S. Shirokov, and V. G. Mokerov, Semicond. Sci. Technol. 22, 222 (2007).ADSCrossRefGoogle Scholar
- 13.W. Walukiewicz, H. E. Ruda, J. I. Agowski, and H. C. Gatos, Phys. Rev. B 30, 4571 (1984).ADSCrossRefGoogle Scholar
- 14.A. N. Vinichenko, V. P. Gladkov, N. I. Kargin, M. N. Strikhanov, and I. S. Vasil’evskii, Semiconductors 48, 1619 (2014).ADSCrossRefGoogle Scholar
- 15.V. A. Kulbachinskii, L. N. Oveshnikov, R. A. Lunin, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, and P. P. Maltsev, Semiconductors 49, 199 (2015).ADSCrossRefGoogle Scholar