Technical Physics Letters

, Volume 44, Issue 2, pp 145–148 | Cite as

Peculiarities of Silicon-Donor Ionization and Electron Scattering in Pseudomorphous AlGaAs/InGaAs/GaAs Quantum Wells with Heavy Unilateral Delta-Doping

  • D. A. Safonov
  • A. N. Vinichenko
  • N. I. Kargin
  • I. S. Vasil’evskii
Article
  • 3 Downloads

Abstract

The influence of the concentration of silicon donors on the electron-transport properties of pseudomorphous Al0.25Ga0.75As/In0.2Ga0.8As/GaAs quantum wells (QWs) in heterostructures with heavy unilateral δ-doping by Si atoms was studied in a broad temperature interval (2.1–300 K). High electron mobility (up to 35700 cm2/(V s)) at T = 4.2 K was observed at a 2D (sheet) electron density of 2 × 1012 cm–2 in the QW. A band mechanism limiting the ionization of donors at an increased level of doping is described. The nonmonotonic variation of electron mobility with increasing silicon concentration is explained. A growth in the mobility is related to increase in the Fermi momentum and screening, while the subsequent decay is caused by tunneling-induced degradation of the spacer layer with decreasing potential of the conduction band in the region of δ-Si layer. It is shown that the effect is not related to filling of the upper subband of dimensional quantization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ohno, J. K. Luo, K. Matsuzaki, and H. Hasegawa, Appl. Phys. Lett. 54, 36 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    M. G. Greally, M. Hayne, A. Usher, G. Hill, and M. Hopkinson, J. Appl. Phys. 79, 8465 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Cordier, P. Lorenzini, J.-M. Chauveau, D. Ferre, Y. Androussi, J. DiPersio, D. Vignaud, and J.-L. Codron, J. Cryst. Growth 251, 822 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    E. Litwin-Staszewska, T. Suski, C. Skierbiszewski, F. Kobbi, J. L. Robert, and V. Mosser, J. Appl. Phys. 77, 405 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, V. G. Mokerov, S. S. Shirokov, R. M. Imamov, and I. A. Subbotin, Semiconductors 42, 1084 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    A. Babinski, J. Siwiec-Matuszyk, J. M. Baranowski, G. Li, and C. Jagadish, Appl. Phys. Lett. 77, 999 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    E. A. B. Cole, T. Boettcher, and C. M. Snowden, Semicond. Sci. Technol. 12, 100 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Vainberg, A. S. Pylypchuk, N. V. Baidus, and B. N. Zvonkov, Semicond. Phys. Quantum Electron. Optoelectron. 16, 152 (2013).CrossRefGoogle Scholar
  9. 9.
    C. Kadow, H.-K. Lin, M. Dahlstrom, M. Rodwell, A. C. Gossard, B. Brar, and G. Sullivan, J. Cryst. Growth 251, 543 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    T. Ishikawa, J. Saito, S. Sasa, and S. Hiyamizu, Jpn. J. Appl. Phys. 21, L675 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    E. F. Schubert and K. Ploog, Phys. Rev. B 30, 7021 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    V. A. Kulbachinskii, I. S. Vasil’evskii, R. A. Lunin, G. Galistu, A. de Visser, G. B. Galiev, S. S. Shirokov, and V. G. Mokerov, Semicond. Sci. Technol. 22, 222 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    W. Walukiewicz, H. E. Ruda, J. I. Agowski, and H. C. Gatos, Phys. Rev. B 30, 4571 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    A. N. Vinichenko, V. P. Gladkov, N. I. Kargin, M. N. Strikhanov, and I. S. Vasil’evskii, Semiconductors 48, 1619 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    V. A. Kulbachinskii, L. N. Oveshnikov, R. A. Lunin, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, and P. P. Maltsev, Semiconductors 49, 199 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. A. Safonov
    • 1
  • A. N. Vinichenko
    • 1
    • 2
  • N. I. Kargin
    • 1
  • I. S. Vasil’evskii
    • 1
  1. 1.National Research Nuclear University Moscow Engineering Physics InstituteMoscowRussia
  2. 2.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations