Technical Physics Letters

, Volume 44, Issue 2, pp 157–159 | Cite as

The Effect of Pulsed Sliding Surface Discharges on Supersonic Airflow past a Thin Wedge in Shock Tube

  • I. V. Mursenkova
  • A. S. Sazonov
  • Yu. Liao


The influence of ~300-ns pulsed sliding surface discharges on supersonic airflow with M = 1.2–1.5 past a thin wedge has been studied in a shock tube at 0.12–0.14 kg/m3 gas density. It is established that inhomogeneity of the airflow-density field near the wedge leads to changes in the discharge current geometry and the structure of surface-discharge glow. The dynamics of discharge-initiated shock waves disturbing the quasi-stationary flow past the wedge was studied by the method of shadow visualization. It is shown that shock waves from intense surface-discharge channels in front of the wedge and behind its rear part can produce nonstationary action on the flow past the wedge surface, which lasts for up to 120 μs after the discharge pulse.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Wang, K. Choi, L. Feng, T. N. Jukes, and R. D. Whalley, Prog. Aerosp. Sci. 62, 52 (2013).CrossRefGoogle Scholar
  2. 2.
    K. D. Bayoda, N. Benard, and E. Moreau, J. Appl. Phys. 118, 063301 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    I. A. Znamenskaya, D. F. Latfullin, A. E. Lutskii, and T. V. Mursenkova, Tech. Phys. Lett. 36, 795 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Zheltovodov and E. A. Pimonov, Tech. Phys. 58, 170 (2013).CrossRefGoogle Scholar
  5. 5.
    T. A. Lapushkina, A. V. Erofeev, and S. A. Ponyaev, Tech. Phys. 56, 616 (2011).CrossRefGoogle Scholar
  6. 6.
    I. A. Znamenskaya, D. F. Latfullin, A. E. Lutsky, I. V. Mursenkova, and N. N. Sysoev, Tech. Phys. 52, 546 (2007).CrossRefGoogle Scholar
  7. 7.
    I. Belysheva, I. Mursenkova, and A. Chvyreva, J. Phys.: Conf. Ser. 516, 012021 (2014).Google Scholar
  8. 8.
    T. V. Bazhenova and L. G. Gvozdeva, Unsteady Interactions of Shock Waves (Nauka, Moscow, 1977) [in Russian].Google Scholar
  9. 9.
    Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Intellekt, Dolgoprudnyi, 2009).Google Scholar
  10. 10.
    I. A. Znamenskaya, I. E. Ivanov, M. K. Kul’kin, I. V. Mursenkova, and A. S. Sazonov, in Proc. of the 44th International Zvenigorod Conference on Physics of Plasma and Controlled Thermonuclear Synthesis (Moscow, 2017), p. 278.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations