Advertisement

Technical Physics Letters

, Volume 44, Issue 2, pp 149–152 | Cite as

Spontaneous Formation of Indium Clusters in InN Epilayers Grown by Molecular-Beam Epitaxy

  • T. A. Komissarova
  • V. N. Jmerik
  • S. V. Ivanov
Article
  • 25 Downloads

Abstract

We have studied the influence of growth conditions on the number of metallic indium clusters formed spontaneously in indium nitride (InN) layers grown by nitrogen plasma-assisted molecular-beam epitaxy (PAMBE). InN epilayers of N-and In-polarity were grown on c-sapphire substrates and GaN and AlN templates, respectively. N-polar layers were obtained in the standard PAMBE regime, while In-polar layers were grown using a three-stage regime including the stages of epitaxy with enhanced atomic migration and interruption of growth under nitrogen flow. A series of samples were prepared at various growth temperatures and relative In/N flow rates. Measurement of the magnetic-field dependences of the Hall-effect coefficient and its model approximation were used to determine the percentage content of In clusters in various InN layers and the minimum amount of such inclusions that can be achieved by varying the conditions of MBE growth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wide Bandgap Semiconductors, Ed. by K. Takashi, A. Yoshikawa, and A. Sandhu (Springer, Berlin, Heidelberg, New York, 2007).Google Scholar
  2. 2.
    V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    J. Wu, J. Appl. Phys. 106, 011101 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Sergeev, I. V. Frolov, and O. A. Radaev, Tech. Phys. Lett. 43, 224 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    I. A. Prudaev, V. V. Kopyev, I. S. Romanov, and V. L. Oleinik, Semiconductors 51, 232 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    S. V. Ivanov, T. V. Shubina, T. A. Komissarova, and V. N. Jmerik, J. Cryst. Growth 403, 83 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    T. V. Shubina, S. V. Ivanov, V. N. Jmerik, A. M. Mizerov, J. Leymarie, A. Vasson, B. Monemar, and P. S. Kop’ev, AIP Conf. Proc. 893, 269 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    T. A. Komissarova, V. N. Jmerik, S. V. Ivanov, and P. Paturi, Appl. Phys. Lett. 99, 072107 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    H. Saitoh, W. Utsumi, and K. Aoki, J. Cryst. Growth 310, 473 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    X. M. Duan and C. Stampfl, Phys. Rev. 77, 115207 (2008).CrossRefGoogle Scholar
  11. 11.
    T. A. Komissarova, M. A. Shakhov, V. N. Jmerik, T. V. Shubina, R. V. Parfeniev, S. V. Ivanov, X. Wang, and A. Yoshikawa, Appl. Phys. Lett. 95, 012107 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    H. Lu, W. J. Schaff, J. Hwang, H. Wu, W. Yeo, A. Pharkya, and L. F. Eastman, Appl. Phys. Lett. 77, 2548 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    T. Yamaguchi and Y. Nanishi, Appl. Phys. Express 2, 051001 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    C. M. Wolfe, G. E. Stillman, and J. A. Rossi, J. Electrochem. Soc. 119, 250 (1972).CrossRefGoogle Scholar
  15. 15.
    Indium Nitride and Related Alloys, Ed. by T. D. Veal, C. F. McConville, and W. J. Schaff (CRC, Boca Raton, FL, 2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. A. Komissarova
    • 1
  • V. N. Jmerik
    • 1
  • S. V. Ivanov
    • 1
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations