Advertisement

Technical Physics Letters

, Volume 44, Issue 2, pp 160–163 | Cite as

Experimental Observation of Delayed Impact-Ionization Avalanche Breakdown in Semiconductor Structures without pn Junctions

  • V. I. Brylevskiy
  • I. A. Smirnova
  • N. I. Podolska
  • Yu. A. Zharova
  • P. B. Rodin
  • I. V. Grekhov
Article
  • 12 Downloads

Abstract

We have experimentally studied the dynamics of impact-ionization switching in semiconductor structures without pn junctions when subnanosecond high-voltage pulses are applied. Silicon n+nn+ type structures and volume ZnSe samples with planar ohmic contacts exhibit reversible avalanche switching to the conducting state within about 200 ps, which resembles the well-known phenomenon of delayed avalanche breakdown in reverse-biased p+nn+ diode structures. Experimental data are compared to the results of numerical simulations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Grekhov and A. F. Kardo-Sysoev, Sov. Tech. Phys. Lett. 5, 395 (1979).Google Scholar
  2. 2.
    A. F. Kardo-Sysoev, in Ultra-wideband Radar Technology, Ed. by J. D. Taylor (CRC, Boca Raton, London, New York, Washington, 2001), Chap.9.Google Scholar
  3. 3.
    I. V. Grekhov, IEEE Trans. Plasma Sci. 38, 1118 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    G. A. Mesyats, A. S. Nasibov, V. G. Shpak, S. A. Shunailov, and M. I. Yalandin, J. Exp. Theor. Phys. 106, 1013 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    V. I. Brylevskiy, I. A. Smirnova, P. B. Rodin, and I. V. Grekhov, Tech. Phys. Lett. 40, 357 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    Zh. I. Alferov, I. V. Grekhov, V. M. Efanov, A. F. Kardo-Sysoev, V. I. Korol’kov, and M. N. Stepanova, Sov. Tech. Phys. Lett. 13, 454 (1987)].Google Scholar
  7. 7.
    V. I. Brylevskiy, I. A. Smirnova, A. V. Rozhkov, P. N. Brunkov, P. B. Rodin, and I. V. Grekov, IEEE Trans. Plasma Sci. 44, 1941 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    R. J. Focia, C. B. Flederman, F. J. Agee, and J. Gaudet, IEEE Trans. Plasma Sci. 25, 138 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    C. K. Lyubytin, S. N. Rukin, B. G. Slovikovsky, and S. N. Tsyranov, Tech. Phys. Lett. 31, 196 (2005).CrossRefGoogle Scholar
  10. 10.
    A. I. Gusev, C. K. Lyubytin, S. N. Rukin, B. G. Slovikovsky, and S. N. Tsyranov, Semiconductors 48, 1067 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    T. V. Blank and Yu. A. Gol’dberg, Semiconductors 41, 1263 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    www.silvaco.com.Google Scholar
  13. 13.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, New York, Wien, 1984).CrossRefGoogle Scholar
  14. 14.
    D. Ventura, M. C. Vecchi, M. Rudan, G. Baccarani, F. Illien, A. Stricker, and L. Zullinob, in Proc. of the International Conference on Simulations of Semiconductor Processes and Devices SISPAD’99, Kyoto, Japan, 1999, pp. 27–30.Google Scholar
  15. 15.
    N. I. Podolska and P. B. Rodin, Tech. Phys. Lett. 43, 527 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Brylevskiy
    • 1
  • I. A. Smirnova
    • 1
  • N. I. Podolska
    • 1
  • Yu. A. Zharova
    • 1
  • P. B. Rodin
    • 1
  • I. V. Grekhov
    • 1
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations