Advertisement

Technical Physics Letters

, Volume 44, Issue 2, pp 167–169 | Cite as

Superhard Nanostructured Ceramic–Metal Coatings with a Low Macrostress Level

  • I. V. Blinkov
  • A. O. Volkhonskii
  • D. S. Belov
  • V. S. Sergevnin
  • A. V. Chernogor
  • T. V. Kiseleva
  • A. V. Bondarev
Article
  • 13 Downloads

Abstract

The macrostressed state of (Ti,Al)N–Cu and (Ti,Al)N–Ni ceramic–metal coatings obtained by the arc-PVD method has been studied using X-ray diffraction and by measuring the radius of curvature of a coating–base composite sample (Stoney’s method). It is established that the presence of a tough metal phase favors significant reduction in the level of macrostresses in these structures as compared to those in (Ti,Al)N ceramic coatings, the absolute values of which decrease from 4.7–4.3 to 0.17–0.32 GPa. At the same time, both Ti–Al–Cu–N and Ti–Al–Ni–N coatings retain high hardness of 43 and 51 GPa, respectively, versus 29 GPa for Ti–Al–N coatings. The obtained results give grounds to suppose that the high hardness of the ceramic–metal coatings studied is determined by their nanocrystalline structure rather than by compressive macrostresses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Musil, M. Jaros, R. Cerstvy, and S. Haviar, J. Vac. Sci. Technol., A 35, 020601 (2017).CrossRefGoogle Scholar
  2. 2.
    O. V. Sobol’, A. A. Andreev, V. F. Gorban’, N. A. Krapivka, V. A. Stolbovoi, I. V. Serdyuk, and V. E. Fil’chikov, Tech. Phys. Lett. 38, 616 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    Nanostructured Coatings, Ed. by A. Cavaleiro and J. Th. M. de Hosson (Springer, New York, 2006).Google Scholar
  4. 4.
    D. S. Belov, I. V. Blinkov, and A. O. Volkhonskii, Surf. Coat. Technol. 260, 186 (2014).CrossRefGoogle Scholar
  5. 5.
    A. J. Perry, Thin Solid Films 193–194, 463 (1990).CrossRefGoogle Scholar
  6. 6.
    A. Nezu, H. Matsuzaka, and R. Yokoyama, Rigaku J. 30, 1276 (2014).Google Scholar
  7. 7.
    X. Feng, Y. Huang, and A. J. Rosakis, J. Appl. Mech. 74, 1276 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Dobrynin, Tech. Phys. Lett. 23, 709 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    S. Zhang, H. L. Wang, and S.-E. Ong, Plasma Process. Polym. 4, 219 (2007).CrossRefGoogle Scholar
  10. 10.
    Y. X. Wang and S. Zhang, Surf. Coat. Technol. 258, 1 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Blinkov
    • 1
  • A. O. Volkhonskii
    • 1
  • D. S. Belov
    • 1
  • V. S. Sergevnin
    • 1
  • A. V. Chernogor
    • 1
  • T. V. Kiseleva
    • 1
  • A. V. Bondarev
    • 1
  1. 1.National University of Science and Technology Moscow Institute of Steel and AlloysMoscowRussia

Personalised recommendations