Technical Physics Letters

, Volume 43, Issue 12, pp 1105–1108 | Cite as

The Influence of the Shape of Model Hydrometeors on the Formation of Discharge between an Artificial-Thunderstorm Cell and the Ground

  • A. G. Temnikov
  • L. L. Chernenskii
  • A. V. Orlov
  • N. Yu. Lysov
  • O. S. Belova
  • T. K. Gerastenok
  • D. S. Zhuravkova
Article

Abstract

We have experimentally studied how arrays of model coarse hydrometeors influence the initiation and propagation of discharge between an artificial-thunderstorm cell of negative or positive polarity and the ground. It is established for the first time that the probability of initiation and stimulation of a channeled discharge between negatively or positively charged cloud and the ground significantly depends on the shape and size of coarse hydrometeors occurring near the thunderstorm cell boundaries. The obtained results can be used in developing methods for the artificial initiation of the cloud–ground type lightning of both polarities and targeted discharge of thunderstorm clouds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Rakov and F. Rachidi, IEEE Trans. Electromagn. Compatib. 51, 428 (2009).CrossRefGoogle Scholar
  2. 2.
    J. R. Dwyer and V. A. Uman, Phys. Rep. 534, 147 (2014).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    D. Petersen, M. Bailey, J. Hallett, and W. Beasley, Q. J. R. Meteorol. Soc. 141 (689), 1283 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    A. Dubinova, C. Rutjes, U. Ebert, S. Buitink, O. Scholten, and T. N. G. Trinh, Phys. Rev. Lett. 115, 015002 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    L. P. Babich, E. I. Bochkov, and T. Neubert, J. Atmos. Sol.-Terr. Phys. 154, 43 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    V. Mazur, C. D. Taylor, and D. A. Petersen, J. Geophys. Res.: Atmos. 120, 10879 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    V. Mazur, C. D. Taylor, and D. A. Petersen, in Proceedings of the Asia-Pacific International Conference on Lightning, Nagoya, Japan, 2015.Google Scholar
  8. 8.
    N. Y. Liu, J. R. Dwyer, and H. K. Rassoul, J. Atmos. Sol.-Terr. Phys. 80, 179 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    A. G. Temnikov, in Proceedings of the IEEE International Conference on Lightning Protection ICLP, Vienna, 2012, p. 6344279.Google Scholar
  10. 10.
    A. G. Temnikov, L. L. Chernenskii, A. V. Orlov, N. Yu. Lysov, O. S. Belova, I. E. Kalugina, T. K. Gerastenok, and D. S. Zhuravkova, Tech. Phys. Lett. 43, 197 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    P. Lalande, A. Bondiou-Clergerie, I. Gallimberti, and G. L. Bacchiega, C. R. Phys. 3, 1375 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    I. P. Vereshchagin, V. S. Morozov, and I. M. Styrikovich, Izv. Akad. Nauk SSSR, Energet. Transp., No. 5, 84 (1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. G. Temnikov
    • 1
  • L. L. Chernenskii
    • 1
  • A. V. Orlov
    • 1
  • N. Yu. Lysov
    • 1
  • O. S. Belova
    • 1
  • T. K. Gerastenok
    • 1
  • D. S. Zhuravkova
    • 1
  1. 1.National Research University MPEI (Moscow Power Engineering Institute)MoscowRussia

Personalised recommendations