Technical Physics Letters

, Volume 43, Issue 12, pp 1121–1123 | Cite as

A CVD Diamond-Based Photodetector for the Visible and Near-IR Spectral Range

  • V. A. Kukushkin
  • D. B. Radischev
  • M. A. Lobaev
  • S. A. Bogdanov
  • A. V. Zdoroveischev
  • I. I. Chunin
Article
  • 17 Downloads

Abstract

A photodetector for the visible and near-IR spectral range has been created on the basis of a chemical- vapor-deposited diamond modulation-doped with boron. The detected electromagnetic radiation is absorbed in a thin Cr (7 nm)–Au (5.5 nm) bimetallic sublayer deposited on the surface of a modulationdoped diamond film comprising a highly doped (up to 5 × 1019 cm–3) 3-nm-thick delta-layer, low-doped (~1017 cm–3) 800-nm-thick sublayer, and highly doped (1020 cm–3) ~10-μm-thick sublayer with an ohmic Ti(50 nm)/Pt(15 nm)/Au(30 nm) contact. Holes generated in the bimetallic sublayer diffuse into diamond and are accelerated by an electric field in the low-doped sublayer to form a response photocurrent. The ampere/watt responsivity of the photodetector reaches 1 μA/W at a radiation wavelength of 445 nm and 0.18 μA/W at 1.06 μm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. T. Collins, in CVD Diamond for Electronic Devices and Sensors, Ed. by R. S. Sussmann (Wiley, Chichester, 2009), p.165.Google Scholar
  2. 2.
    Yu. V. Gulyaev, G. V. Chucheva, A. E. Nabiev, A. A. Altukhov, A. V. Popov, V. S. Feshchenko, and V. A. Shepelev, J. Commun. Technol. Electron. 61, 449 (2016).CrossRefGoogle Scholar
  3. 3.
    E. A. Il’ichev, A. E. Kuleshov, R. M. Nabiev, G. N. Petrukhin, G. S. Rychkov, and E. G. Teverovskaya, Tech. Phys. Lett. 43, 345 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    M. Bruzzi, F. Hartjes, S. Lagomarsino, D. Menichelli, S. Mersi, S. Miglio, M. Scaringella, and S. Sciortino, Phys. Status Solidi A 199, 138 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    S. Majdi, M. Kolahdouz, M. Moeen, K. K. Kovi, R. S. Balmer, H. H. Radamson, and J. Isberg, Appl. Phys. Lett. 105, 163510 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), Chap.13.Google Scholar
  7. 7.
    J. E. Butler, M. W. Geis, K. E. Krohn, J. Lawless, Jr., S. Deneault, T. M. Lyszczarz, D. Flechtner, and R. Wright, Semicond. Sci. Technol. 18, S67 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    A. L. Vikharev, A. M. Gorbachev, M. A. Lobaev, A. B. Muchnikov, D. B. Radishev, V. A. Isaev, V. V. Chernov, S. A. Bogdanov, M. N. Drozdov, and J. E. Butler, Phys. Status Solidi RRL 10, 324 (2016).CrossRefGoogle Scholar
  9. 9.
    V. A. Kukushkin and S. A. Bogdanov, Diamond Rel. Mater. 60, 94 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Kukushkin
    • 1
    • 2
  • D. B. Radischev
    • 1
  • M. A. Lobaev
    • 1
  • S. A. Bogdanov
    • 1
  • A. V. Zdoroveischev
    • 3
  • I. I. Chunin
    • 3
  1. 1.Institute of Applied Physics, Russian Academy of SciencesFederal Research CenterNizhny NovgorodRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.Physical-Technical Research InstituteLobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations