Advertisement

Technical Physics Letters

, Volume 43, Issue 12, pp 1140–1143 | Cite as

The Catalytic Effect of Electronegative Additives on Removal of Perchloroethylene Vapor from Air by Pulsed Corona Discharge

  • I. E. Filatov
  • V. V. Uvarin
  • D. L. Kuznetsov
Article
  • 17 Downloads

Abstract

It is established that electronegative additives (CCl4, freon-113) produce a catalytic effect on the conversion of volatile organic compounds (VOCs) under the action of atmospheric-pressure nonequilibrium plasma generated in pulsed corona discharge. At concentrations below 0.1%, these additives significantly decrease the discharge current, but the energy efficiency of the process of VOC removal from air increases. The catalytic effect of electronegative additives on the VOC conversion in air and nitrogen is quantitatively demonstrated in the case of perchloroethylene C2Cl4 (PCE) vapor removal. The addition of 0.085% CCl4 to air reduces the energy consumption for PCE removal at initial concentration of 0.09% by half (from 12 to 6 eV per molecule) at a 63% degree of cleaning. Mechanisms explaining the active inf luence of electronegative additives on the discharge current and the process of impurity removal are suggested.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. M. Penetrante and S. E. Schultheis, Non-Thermal Plasma Techniques for Pollution Control, Vol. 634 of NATO ASI Ser. B (Springer, Heidelberg, 1993), Pts. A, B.CrossRefGoogle Scholar
  2. 2.
    G. Xiao, W. Xu, R. Wu, M. Ni, X. Gao, Z. Luo, K. Cen, and C. Du, Plasma Chem. Plasma Process. 34, 1033 (2014).CrossRefGoogle Scholar
  3. 3.
    V. I. Parvulescu, M. Magureanu, and P. Lukes, Plasma Chemistry and Catalysis in Gases and Liquids (Wiley, VCH, Weinheim, 2012).CrossRefGoogle Scholar
  4. 4.
    M. J. Kirkpatrick, W. C. Finney, and B. R. Locke, Plasmas Polym. 8, 165 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Magureanu, N. B. Mandache, and V. I. Parvulescu, Plasma Chem. Plasma Process. 27, 679 (2007).CrossRefGoogle Scholar
  6. 6.
    I. E. Filatov, V. V. Uvarin, and D. L. Kuznetsov, Tech. Phys. Lett. 42, 927 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    S. N. Rukin, Instrum. Exp. Tech. 42, 439 (1999).Google Scholar
  8. 8.
    A. N. Trushkin, M. E. Grushin, I. V. Kochetov, N. I. Trushkin, and Yu. S. Akishev, Plasma Phys. Rep. 39, 167 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. Akishev, A. Deryugin, I. Kochetov, A. Napartovich, and N. Trushkin, J. Phys. D: Appl. Phys. 26, 1630 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    Yu. N. Novoselov, V. V. Ryzhov, and A. I. Suslov, Tech. Phys. 44, 44 (1999).CrossRefGoogle Scholar
  11. 11.
    R. A. Akhmedzhanov, A. L. Vikharev, A. M. Gorbachev, O. A. Ivanov, and A. L. Kolysko, Tech. Phys. 42, 260 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. E. Filatov
    • 1
  • V. V. Uvarin
    • 1
  • D. L. Kuznetsov
    • 1
  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations