Technical Physics Letters

, Volume 43, Issue 12, pp 1074–1076 | Cite as

Increasing the Luminescence Yield of Zirconia

  • S. V. Nikiforov
  • V. S. Kortov
  • A. N. Kiryakov
  • S. F. Konev
  • A. A. Men’shenina
Article
  • 1 Downloads

Abstract

The effect of high-temperature treatment in vacuum in the presence of carbon as a reducing agent on the luminescent properties of zirconia is studied. It is shown that an increase in the intensity of pulsed cathodoluminescence at 480 nm and thermoluminescence in the dominant peak at 500 K is due to the thermochemical coloration of the initial samples with the formation of oxygen vacancies detected by electron paramagnetic resonance. The described procedure for increasing the luminescence yield of ZrO2 can be applied when it is used in optoelectronics, photonics, and radiation dosimetry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Kiisk, L. Puust, K. Utt, A. Maaros, H. Mandar, E. Viviani, F. Piccinelli, R. Saar, U. Joost, and I. Sildos, J. Lumin. 174, 49 (2016).CrossRefGoogle Scholar
  2. 2.
    A. I. Popov, E. A. Kotomin, and J. Maier, Nucl. Instrum. Methods Phys. Res. B 268, 3084 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    V. S. Kortov, S. V. Zvonarev, A. N. Kiryakov, and D. V. Ananchenko, Rad. Meas. 90, 196 (2016).CrossRefGoogle Scholar
  4. 4.
    S. V. Nikiforov, V. S. Kortov, and M. O. Petrov, Rad. Meas. 90, 252 (2016).CrossRefGoogle Scholar
  5. 5.
    T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, J. Appl. Phys. 116, 244109 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. L. Krutskii, K. D. Dyukova, A. G. Bannov, E. A. Maksimovskii, A. V. Ukhina, T. M. Krutskaya, O. V. Netskina, and V. V. Kuznetsova, Nauch. Vestn. NGTU 60 (3), 92 (2015).Google Scholar
  7. 7.
    Y. Cong, B. Li, S. Yue, D. Fan, and X. Wang, J. Phys. Chem. C 113, 13974 (2009).CrossRefGoogle Scholar
  8. 8.
    K. Smits, A. Sarakovskis, L. Grigorjeva, D. Millers, and J. Grabis, J. Appl. Phys. 115, 213520 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    E. V. Frolova and M. I. Ivanovskaya, Mater. Sci. Eng. C 26, 1106 (2006).CrossRefGoogle Scholar
  10. 10.
    Z. Wang, J. Zhang, G. Zheng, Y. Liu, and Y. Zhao, J. Lumin. 132, 2817 (2012).CrossRefGoogle Scholar
  11. 11.
    E. Aleksanyan, M. Kirm, E. Feldbach, and V. Harutyunyan, Rad. Meas. 90, 84 (2016).CrossRefGoogle Scholar
  12. 12.
    S. V. Nikiforov, V. S. Kortov, D. L. Savushkin, A. S. Vokhmintsev, and I. A. Weinstein, Rad. Meas. (2017). doi 10.1016/j.radmeas.2017.03.020Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Nikiforov
    • 1
  • V. S. Kortov
    • 1
  • A. N. Kiryakov
    • 1
  • S. F. Konev
    • 1
  • A. A. Men’shenina
    • 1
  1. 1.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations