Technical Physics Letters

, Volume 43, Issue 12, pp 1067–1070 | Cite as

Detection of Alfvén Oscillations on the Globus-M Tokamak Using the Doppler Backscattering Method

  • V. V. Bulanin
  • V. K. Gusev
  • G. S. Kurskiev
  • V. B. Minaev
  • M. I. Patrov
  • A. V. Petrov
  • M. A. Petrov
  • Yu. V. Petrov
  • A. Yu. Telnova
  • A. Yu. Yashin
Article
  • 1 Downloads

Abstract

The method of Doppler backscattering (DBS) has been applied for the study of Alfvén oscillations in the tokamak plasma for the first time. The oscillations of the plasma rotation velocity at the Alfvén frequency have been able to be registered using DBS during the studies on the Globus-M spherical tokamak. The area of the development of Alfvén instability has been determined. The measurement of the amplitude of rotation velocity oscillations has allowed the estimation of the absolute values of the amplitudes of the oscillations of the electric and magnetic fields of Alfvén oscillations in the region of their existence in the plasma-discharge volume in tokamak.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. W. Heidbrink, Phys. Plasmas 15, 055501 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    N. N. Gorelenkov, S. D. Pinches, and K. Toi, Nucl. Fus. 54, 125001 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    E. D. Fredrickson, R. E. Bell, et al., Phys. Plasmas 13, 056109 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. V. Petrov, V. K. Gusev, M. I. Patrov, et al., J. Plasma Phys. 81, 515810601 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Podesta, R. E. Bell, et al., Nucl. Fusion 52, 094001 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Melnikov, L. G. Eliseev, et al., Nucl. Fusion 52, 123004 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. van Zeeland, G. J. Kramer, et al., Phys. Rev. Lett. 97, 135001 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Bulanin, S. V. Lebedev, L. S. Levin, and V. S. Roytershteyn, Plasma Phys. Rep. 26, 813 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    M. Hirsch, E. Holzhauer, et al., Plasma Phys. Control. Fusion 43, 1641 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    G. D. Conway et al., Plasma Phys. Control. Fusion 47, 1165 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    P. Hennequin, C. Honore, A. Truc, et al., Nucl. Fusion 46, 771 (2006).CrossRefGoogle Scholar
  12. 12.
    J. C. Hillesheim et al., Nucl. Fusion 55, 073024 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    V. V. Bulanin and M. V. Yafanov, Plasma Phys. Rep. 32, 47 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    A. Y. Yashin, V. V. Bulanin, A. V. Petrov, et al., J. Instrum. 10, 10023 (2015).CrossRefGoogle Scholar
  15. 15.
    Yu. V. Petrov, M. I. Patrov, V. K. Gusev, A. E. Ivanov, V. B. Minaev, N. V. Sakharov, S. Yu. Tolstyakov, and G. S. Kurskiev, Plasma Phys. Rep. 37, 1001 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Bulanin
    • 1
  • V. K. Gusev
    • 2
  • G. S. Kurskiev
    • 2
  • V. B. Minaev
    • 2
  • M. I. Patrov
    • 2
  • A. V. Petrov
    • 1
  • M. A. Petrov
    • 1
  • Yu. V. Petrov
    • 2
  • A. Yu. Telnova
    • 2
  • A. Yu. Yashin
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations