Obtaining Titanium Carbide in an Atmospheric Electric Discharge Plasma

Abstract

The results of experimental studies on the development of scientific and technical foundations of a method to obtain cubic titanium carbide in plasma of a DC arc discharge initiated in air have been presented. According to X-ray diffractometry of powder materials obtained in a series of experiments, the dependences of phase composition of the product on the duration of synthesis have been determined. Using the results of scanning electron microscopy and energy dispersion analysis, several morphological types of titanium carbide particles, which are formed as a result of uneven energy distribution in the reaction volume, have been revealed.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    S. A. Rasakia, B. Zhanga, K. Anbalgamb, T. Thomas, and M. Yang, Prog. Solid State Chem. 50, 1 (2018). https://doi.org/10.1016/j.progsolidstchem.2018.05.001

    Article  Google Scholar 

  2. 2

    D. Cho, J. H. Park, Y. Jeong, and Y. L. Loo, Ceram. Int. 41, 10974 (2015). https://doi.org/10.1016/j.ceramint.2015.05.041

    Article  Google Scholar 

  3. 3

    Q. Dong, M. Huang, C. Guo, G. Yu, and M. Wu, Int. J. Hydrogen Energy 42, 3206 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.217

    Article  Google Scholar 

  4. 4

    M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, and M. W. Barsoum, Nature (London, U.K.) 516, 78 (2014). https://doi.org/10.1038/nature13970

    ADS  Article  Google Scholar 

  5. 5

    S. Lin and X. Zhang, J. Power Sources 294, 354 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.082

    ADS  Article  Google Scholar 

  6. 6

    A. Bonis, A. Santagata, A. Galasso, A. Laurite, and R. Teghil, J. Colloid Interface Sci. 489, 76 (2017). https://doi.org/10.1016/j.jcis.2016.08.078

    ADS  Article  Google Scholar 

  7. 7

    J. Yu, H. Yu, J. Gao, L. Zhou, A. Ding, X. Gao, H. Huang, S. Gao, A. Shah, X. Dong, and X. Quan, J. Alloys Compd. 693, 500 (2017). https://doi.org/10.1016/j.jallcom.2016.09.232

    Article  Google Scholar 

  8. 8

    Y. Su, H. Wei, T. Li, H. Geng, and Y. Zhang, Mater. Res. Bull. 50, 23 (2014). .https://doi.org/10.1016/j.materresbull.2013.10.013

    Article  Google Scholar 

  9. 9

    J. Zhao, Y. Su, Z. Yang, L. Wei, Y. Wang, and Y. Zhang, Carbon 58, 92 (2013). https://doi.org/10.1016/j.carbon.2013.02.036

    Article  Google Scholar 

  10. 10

    R. Joshi, J. Engstler, P. Kesavan Nair, P. Haridoss, and J. J. Schneider, Diamond Relat. Mater. 17, 13 (2008). https://doi.org/10.1016/j.diamond.2008.01.004

    Article  Google Scholar 

  11. 11

    J. Zhao, L. Wei, Z. Yang, and Y. Zhang, Phys. E (Amsterdam, Neth.) 44, 1639 (2012). https://doi.org/10.1016/j.physe.2012.04.010

    ADS  Article  Google Scholar 

  12. 12

    A. Ya. Pak and G. Ya. Mamontov, Tech. Phys. Lett. 44, 615 (2018).

    ADS  Article  Google Scholar 

  13. 13

    A. Y. Pak, M. A. Rudmin, G. Y. Mamontov, and O. A. Bolotnikova, J. Superhard Mater. 40, 157 (2018).

    Article  Google Scholar 

  14. 14

    N. Arora and N. Sharma, Diamond Relat. Mater. 50, 135 (2014). https://doi.org/10.1016/j.diamond.2014.10.001

    ADS  Article  Google Scholar 

  15. 15

    A. Ya. Pak, Tech. Phys. Lett. 45, 866 (2019).

    ADS  Article  Google Scholar 

  16. 16

    B. Predel, Numer. Data Funct. Rel. Sci. Tech. B 5, 1 (2018). https://doi.org/10.1007/10040476_671

    Article  Google Scholar 

  17. 17

    K. Frisk, Calphad 27, 367 (2003). https://doi.org/10.1016/j.calphad.2004.01.004

    Article  Google Scholar 

  18. 18

    L. V. Petrova, Extended Abstract of Cand. Sci. Dissertation (Ufa, 1996).

  19. 19

    M. I. Alymov, V. S. Shustov, A. V. Kasimtsev, V. V. Zhigunov, A. B. Ankudinov, and V. A. Zelenskii, Nanotechnol. Russ. 6, 130 (2011).

    Article  Google Scholar 

  20. 20

    A. I. Gusev, Russ. Chem. Rev. 71, 439 (2002).

    ADS  Article  Google Scholar 

  21. 21

    V. N. Lipatnikov, A. Kottar, L. V. Zueva, and A. I. Gusev, Phys. Solid State 40, 1211 (1998).

    ADS  Article  Google Scholar 

  22. 22

    D. V. Schur, A. G. Dubovoy, S. Yu. Zaginaichenko, V. M. Adejev, A. V. Kotko, V. A. Bogolepov, A. F. Savenko, and A. D. Zolotarenko, Carbon 45, 1322 (2007). https://doi.org/10.1016/j.carbon.2007.01.017

    Article  Google Scholar 

Download references

Funding

This study was supported by the program for increasing the competitiveness of the Tomsk Polytechnic University (VIU-NRiI-346/2019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Pak.

Ethics declarations

The authors declare that they do not have a conflict of interest.

Additional information

Translated by M. Astrov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pak, A.Y., Yakich, T.Y., Mamontov, G.Y. et al. Obtaining Titanium Carbide in an Atmospheric Electric Discharge Plasma. Tech. Phys. 65, 771–776 (2020). https://doi.org/10.1134/S1063784220050205

Download citation