Position-Sensitive Detectors of Thermal and Cold Neutrons with \(_{5}^{{10}}{\text{B}}\) Thin-Film Converter (Review)

Abstract

We present a brief analytic review of position-sensitive detectors of thermal and cold neutrons based on a \(_{5}^{{10}}{\text{B}}\) thin-film converter. Most attention is paid to new approaches and technical solutions determining trends in development of this technique.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Notes

  1. 1.

    The nuclear charge will be henceforth omitted.

  2. 2.

    Stopping and Range of Ions in Matter (SRIM), http://www.srim.org/.

  3. 3.

    https:/www.rechargegate.net/profile/Keffrey_Lacy2/publication/241636429_Performance_of_a_straw-based_portable_neutron_coincidencemultiplicitly_counter/links/590ab4a2a6fdcc4961777840/Performance-of-a-straw-based-portable-neutron-coincidence-multoplicity-counter.pdf.

  4. 4.

    Here and below, the special resolution is given at full width at half maximum (FWHM).

  5. 5.

    http:mpgd.web.cern.ch/mpgd/.

  6. 6.

    Abbreviation GEM (general materials diffractometer on the ISIS reactor) should not be confused with abbreviation GEM for a gaseous electron multiplier, which is commonly used in the literature published in English.

  7. 7.

    Hydrogen strongly scatters neutrons.

  8. 8.

    The deficit appears when the integration time is much shorter than the time of collection of the total charge; for example, about 10% of the charge is detected in MWPCs and MSGCs.

  9. 9.

    This abbreviation is used for micro-time projection chamber (see C. Golabek et al.), A μ-TPC Detector for the Characterization of Low-Energy Neutron Fields // arXiv:1203.2443v1.

REFERENCES

  1. 1

    A. Kashchuk and O. Levitskaya, Tech. Phys. 65 (4) (2020, in press).

    ADS  Article  Google Scholar 

  2. 2

    C. Höglund, K. Zeitelhack, P. Kudejova, J. Jensen, G.  Greczynski, J. Lu, L. Hultman, J. Birch, and R. Hall-Wilton, Rad. Phys. Chem. 113, 14 (2015).

    ADS  Article  Google Scholar 

  3. 3

    M. Köhli, K. Desch, M. Gruber, J. Kaminski, F. P. Schmidt, and T. Wagner, Nucl. Instrum. Methods Phys. Res., Sect. A 828, 242 (2016).

    Google Scholar 

  4. 4

    P. Convert and J. B. Forsyth, Position-Sensitive Detection of Thermal Neutrons (Academic, London, 1983). https://inis.iaea.org/search/search.aspx?num=10&orig_q=source%3a%22ISBN12-186180-5%22&lang=en-US&login=false&user=External&src=ics&sort=date:D:L:d1&start=0.

    Google Scholar 

  5. 5

    R. Hall-Wilton, in Proceedings of the CREMLIN Workshop, May 13–16,2018, St. Petersburg. https://indico.frm2.tum.de/event/65/sessions/294/attachments/202/333/180513_PNPIInstr_10BDetectors_RJHW-reducedsize.pdf.

  6. 6

    J. L. Lacy, A. Athanasiades, C. S. Martin, L. Sun, and G. L. Vazquez-Flores, IEEE Trans. Nucl. Sci. 60, 1140 (2013). https://doi.org/10.1109/NSSMIC.2011.6154533

    ADS  Article  Google Scholar 

  7. 7

    F. Piscitelli and P. van Esch, J. Instrum. 8, 04020 (2013).

    Article  Google Scholar 

  8. 8

    Van der B. M. Ende, E. T. Rand, A. Erlandson, and L. Li, Nucl. Instrum. Methods Phys. Res., Sect. A 894, 138 (2018).

  9. 9

    Z. Xie, J. Zhou, Y. Song, L. Sun, Z. Sun, B. Hu, and Y. Chen, arXiv:1611.07615 (2016).

  10. 10

    F. Piscitelli, J. C. Buffet, J. F. Clergeau, S. Cuccaro, B. Guerard, A. Khaplanov, Q. LaManna, J. M. Rigal, and P. VanEsch, J. Instrum. 9, 03007 (2014).

    Article  Google Scholar 

  11. 11

    B. Guerard and J. Buffet, US Patent Appl. 13/038, 915, No. 20110215251. https://patentimages.storage.googleapis.com/54/-45/a7/6c07ac4c63bb62/US20110215251A1.pdf.

  12. 12

    F. Piscitelli, PhD Thesis (2013). https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/List_of_PhD_thesis/Piscitelli_PhDthesis_c.pdf.

  13. 13

    F. Piscitelli, J. C. Buffet, J. F. Clergeau, S. Cuccaro, B. Guerard, A. Khaplanov, Q. LaManna, J. M. Rigal, and P. VanEsch, arXiv:1312.2473v1.

  14. 14

    F. Piscitelli, F. Messi, M. Anastasopoulos, T. Bryś, F. Chicken, E. Dian, J. Fuzi, C. Höglund, G. Kiss, J.  Orban, P. Pazmandi, L. Rosta, L. Robinson, S. Schmidt, D. Varga, T. Zsiros, and R. Hall-Wilton, J. Instrum. 12, 03013 (2017).

    Google Scholar 

  15. 15

    F. Messi, G. Mauri, and F. Piscitelli, Nucl. Instrum. Methods Phys. Res., Sect. A 936, 499 (2019).

    Google Scholar 

  16. 16

    G. Mauri, G. Mauri, F. Messi, K. Kanaki, R. Hall-Wilton, E. Karnickis, A. Khaplanov, and F. Piscitelli, J. Instrum. 13, 03004 (2018).

    Article  Google Scholar 

  17. 17

    I. Stefanescu, Y. Abdullahi, J. Birch, I. Defendi, R. Hall-Wilton, C. Höglund, L. Hultman, D. Seiler, and K. Zeitelhack, Nucl. Instrum. Methods Phys. Res., Sect. A 727, 109 (2013).

    Google Scholar 

  18. 18

    I. Stefanescu, Y. Abdullahi, J. Birch, I. Defendi, R. Hall-Wilton, C. Hoglund, L. Hultman, M. Zee, and   K.  Zeitelhack,   J.  Instrum.   8,   12003   (2013). arXiv:1309.7789v1

    Article  Google Scholar 

  19. 19

    A. Oed, Nucl. Instrum. Methods Phys. Res., Sect. A 263, 62 (1988).

    Google Scholar 

  20. 20

    J. C. Buffet, J. F. Clergeau, R. G. Cooper, J. Darpentigny, De A. Laulany, C. Fermon, S. Fetal, F. Fraga, B.   Guerard, R. Kampmann, A. Kastenmueller, G. J. McIntyre, G. Manzin, F. Meilleu, F. Millier, N. Rhodes, L. Rosta, E. Schooneveld, G. C. Smith, H.   Takahashi, P. VanEsch, T. L. VanVuure, and K. Zeitelhack, Nucl. Instrum. Methods Phys. Res., Sect. A 554, 392 (2005).

    Google Scholar 

  21. 21

    F. Sauli, Nucl. Instrum. Methods Phys. Res., Sect. A 386, 531 (1997).

    Google Scholar 

  22. 22

    Y. Giomataris, Ph. Rebourgeard, J. P. Robert, and G. Charpak, Nucl. Instrum. Methods Phys. Res., Sect. A 376, 29 (1996).

    Google Scholar 

  23. 23

    T. Fujiwara, H. Takahashi, N. L. Yamada, and M. Uesaka, in Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013NSS/MIC). https:ieeexplore.ieee.org/document/6829580.

  24. 24

    M. Klein and C. J. Schmidt, Nucl. Instrum. Methods Phys. Res., Sect. A 628, 9 (2011).

    Google Scholar 

  25. 25

    B. Flierl, R. Hertenberger, O. Biebel, and K. Zeitelhack, Nucl. Instrum. Methods Phys. Res., Sect. A 824, 528 (2016).

    Google Scholar 

  26. 26

    D. Pfeiffer, F. Resnati, J. Birch, R. Hall-Wilton, C. Höoglund, L. Hultman, G. Iakovidis, E. Oliveri, E. Oksanen, L. Ropelewski, and P. Thuiner, J. Instrum. 10, 04004 (2015).

    Article  Google Scholar 

  27. 27

    G. Bencivenni, R. Oliveira, G. Felici, M. Gatta, M. Giovannetti, G. Morello, A. Ochi, Poli M. Lener, and E. Tskhadadze, J. Instrum. 14, 05014 (2019).

    Article  Google Scholar 

  28. 28

    G. Tsiledakis, A. Delbart, D. Desforge, I. Giomataris, T. Papaevangelou, R. Hall-Wilton, C. Höglund, L. Robinson, S. Schmidt, A. Menelle, and M. Pomorski, in Proceedings of 7th International Conference on New Frontiers in Physics ICNFP-2018, Kolymbari, Crete, Greece, Universe 4 (12), 134 (2018).

    ADS  Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation, agreement no. 075-02-2018-260 (November 26, 2018), unique identification number of the project is RFMEFI60718X0200, application no. 2018-14-000-0001-024.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. P. Kashchuk.

Ethics declarations

The authors claim that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kashchuk, A.P., Levitskaya, O.V. Position-Sensitive Detectors of Thermal and Cold Neutrons with \(_{5}^{{10}}{\text{B}}\) Thin-Film Converter (Review). Tech. Phys. 65, 673–684 (2020). https://doi.org/10.1134/S1063784220050114

Download citation