Pulse–Periodic Diffuse Discharge with Self-Ionization in a Gas Flow


A pulse–periodic diffuse discharge self-initiated in an atmospheric-pressure air flow passing through an annular gap with a strongly nonuniform electric field has been studied. The discharge serves as a source of a weakly ionized nonequilibrium plasma in which effective synthesis of nitrogen oxide is provided. It has been found that diffuse current channels sequentially arise in the annular gap in the direction of the air flow in time with high-voltage pulses. Experimental data suggest that the self-ionization (self-initiation) effect is due to the shift of negative oxygen ions accumulated in current channels and the mechanism behind the appearance of “seed” electrons in breakdown areas is the detachment of electrons from oxygen ions.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    A. F. Vanin, Vestn. Akad. Nauk, No. 4, 3 (2000).

    Google Scholar 

  2. 2

    M. A. Malik, Plasma Chem. Plasma Process. 36, 737 (2016). https://doi.org/10.1007/s11090-016-9698-1

    Article  Google Scholar 

  3. 3

    B. Yu, S. Muenster, A. H. Blaesi, D. B. Bloch, and W.  M. Zapol, Sci. Transl. Med. 7, 294ra107–294ra107.58 (2015)

    Article  Google Scholar 

  4. 4

    T. Namihira, S. Katsuki, R. Hackam, H. Akiyama, and K. Okamoto, IEEE Trans. Plasma Sci. 30, 1993 (2002).

    ADS  Article  Google Scholar 

  5. 5

    H. Hu, H. Liang, J. Li, Q. Zhao, and J. He, IEEE Trans. Plasma Sci. 35, 619 (2007).

    ADS  Article  Google Scholar 

  6. 6

    V. D. Rusanov, A. A. Fridman, and G. V. Sholin, Khim. Plazmy, No. 5, 232 (1978).

    Google Scholar 

  7. 7

    V. D. Rusanov, A. A. Fridman, and G. V. Sholin, Sov. Phys. Usp. 24, 437 (1981).

    ADS  Article  Google Scholar 

  8. 8

    S. N. Buranov, V. I. Karelin, V. D. Selemir, and A. S. Shirshin, RF Patent No. 2593297 (2016).

  9. 9

    S. N. Buranov, A. B. Buyanov, S. V. Voevodin, V. I. Karelin, V. D. Selemir, and A. S. Shirshin, Bioradik. Antioksid. 3, 225 (2016).

    Google Scholar 

  10. 10

    S. N. Buranov, V. V. Gorokhov, V. I. Karelin, and P. B. Repin, Instrum. Exp. Tech. 42, 122 (1999).

    Google Scholar 

  11. 11

    Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Intellekt, Dolgoprudnyi, 2009).

  12. 12

    V. G. Samoilovich, V. I. Gibalov, and K. V. Kozlov, Physical Chemistry of a Barrier Discharge (Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  13. 13

    V. V. Lunin, M. P. Popovich, and S. N. Tkachenko, Physical Chemistry of Ozone (Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  14. 14

    E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1977; CRC, Boca Raton, 1997) [in Russian].

  15. 15

    H. S. W. Massey, Negative Ions (Cambridge Univ. Press, New York, 1976).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. S. Shirshin.

Ethics declarations

The authors claim that there is no conflict of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buranov, S.N., Gorokhov, V.V., Karelin, V.I. et al. Pulse–Periodic Diffuse Discharge with Self-Ionization in a Gas Flow. Tech. Phys. 65, 723–727 (2020). https://doi.org/10.1134/S1063784220050060

Download citation