Quasi-Macroscopic Boundary Structures in “Nonsimple” Fluids: Experiment and Model

Abstract

Experiments have shown that near the boundary of a “nonsimple” fluid (such as nitrobenzene) on a solid substrate, there may exist an extended, so-called epitropic, phase with evidence of ordered arrangement of molecules (akin to that in a nematic liquid crystal). New data on the temperature dependence of the thickness of this phase in nitrobenzene on a metallic substrate are reported. These data (as well as earlier data for a nitrobenzene/quartz system) are interpreted in terms of a modified theoretical model of the epitropic phase as a pile of oligomers adhering to the substrate by means of adsorption forces. Ordering is essentially governed by lateral interactions in an ensemble of adsorbed oligomers. The possibility of boundary phase existence as a superheated crystal (in particular, nitrobenzene) stabilized by adsorption forces from the side of the substrate is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    However, a number of examples are known today when direct crystal–melt contact is avoided (see, e.g., [18], where it was reported that a silver single crystal encapsulated in an impermeable gold sheath was superheated by 25 K above Tm; see also [19]). It should be noted that the very possibility of latching the metastable state of a superheated crystal can be explained by the slow kinetics of transition to a stable fluid phase (for example, when its viscosity is large [17]).

  2. 2.

    Depending on the SiO2 surface modification, the concentration of silanol (OH-containing) groups equals 8–16 μmol/m2 [23], which corresponds to na = (4.8–9.6) × 1018 m–2. As to Wa, it is roughly equal to 0.1 eV, which is characteristic of the energy of physical adsorption for molecules on a real substrate [24].

  3. 3.

    These measurements were conducted with the participation of A.F. Butenko and A.Yu. Popovskii.

  4. 4.

    As characteristic length l0, we took the size of a benzene ring in a nitrobenzene molecule

  5. 5.

    Using the method of computer simulation, it was found that the distance between neighboring silanol groups is 0.378–0.547 nm, which corresponds to na ≈ (3.3–7.0) × 1018 m–2.

  6. 6.

    Optical anisotropy measurements were taken with the participation of E.A. Shatagina, A.A. Shatagina, and I.A. Shatagin, and the dichroism was measured by A.Yu. Popovskii and A.F. Butenko.

REFERENCES

  1. 1

    B. V. Deryagin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  2. 2

    B. V. Deryagin, B. A. Altoiz, and I. I. Nikitenko, Dokl. Akad. Nauk SSSR 300, 377 (1988).

    Google Scholar 

  3. 3

    B. V. Deryagin, Yu. M. Popovskii, and B. A. Altoiz, Otkryt. Izobret., No. 12, 1 (1991).

  4. 4

    B. V. Derjaguin, B. A. Altoiz, and I. I. Nikitenko, J. Colloid Interface Sci. 145, 441 (1991).

    ADS  Article  Google Scholar 

  5. 5

    B. V. Derjaguin, Yu. M. Popovskij, and B. A. Altoiz, J. Colloid Interface Sci. 96, 492 (1983).

    ADS  Article  Google Scholar 

  6. 6

    Yu. M. Popovskii and B. A. Altoiz, Kolloid. Zh. 43, 1177 (1981).

    Google Scholar 

  7. 7

    G. V. Saidov, V. A. Amelichev, D. I. Polyakov, and M. E. Yudovich, Zh. Fiz. Khim. 60, 1452 (1986).

    Google Scholar 

  8. 8

    B. V. Derjaguin, B. A. Altoiz, and Yu. M. Popovskij, J. Colloid Interface Sci. 148, 56 (1992).

    ADS  Article  Google Scholar 

  9. 9

    B. A. Altoiz and Yu. M. Popovskii, Physics of the Surface Layers (Astroprint, Odessa, 1995).

    Google Scholar 

  10. 10

    V. I. Vettegren’ and A. I. Tupitsyna, Tech. Phys. Lett. 24, 381 (1998).

    ADS  Article  Google Scholar 

  11. 11

    S. V. Kiriyan and B. A. Altoiz, J. Frict. Wear 31, 234 (2010).

    Article  Google Scholar 

  12. 12

    B. A. Altoiz, A. F. Butenko, and S. V. Kiriyan, Tech. Phys. 63, 1 (2018).

    Article  Google Scholar 

  13. 13

    S. M. Mezhikovskii, A. E. Arinshtein, and R. Ya. Deberdeev, Oligomeric State of a Matter (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  14. 14

    D. J. Donaldson, M. D. Farrington, and P. Kruus, J. Phys. Chem. 83, 3130 (1979).

    Article  Google Scholar 

  15. 15

    P. Sigal, Ph. Masciantonio, and P. Fugassi, J. Polym. Sci. A 4, 761 (1966).

    Article  Google Scholar 

  16. 16

    B. A. Altoiz, V. N. Bondarev, E. A. Shatagina, and S. V. Kiriyan, Tech. Phys. 59, 1003 (2014).

    Article  Google Scholar 

  17. 17

    A. R. Ubbelohde, Melting and Crystal Structure (Clarendon Press, Oxford, 1965).

    Google Scholar 

  18. 18

    J. Daeges, H. Gleiter, and J. H. Perepezko, Phys. Lett. A 119, 79 (1986).

    ADS  Article  Google Scholar 

  19. 19

    K. Lu and Y. Li, Phys. Rev. Lett. 80, 4474 (1998).

    ADS  Article  Google Scholar 

  20. 20

    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1974; Pergamon, Oxford, 1980) [in Russian].

  21. 21

    S. Tsuzuki, K. Honda, T. Uchimaru, and M. Mikami, J. Chem. Phys. 125, 124304 (2006).

    ADS  Article  Google Scholar 

  22. 22

    Chemist's Handbook (Khimiya, Moscow, Leningrad, 1966), Vol. 1 [in Russian].

  23. 23

    S. P. Zhdanov, Zh. Fiz. Khim. 36, 2098 (1962).

    Google Scholar 

  24. 24

    V. F. Kiselev, Surface Phenomena in Semiconductors and Dielectrics (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  25. 25

    J. Trotter, Acta Cryst. 12, 884 (1959).

    Article  Google Scholar 

  26. 26

    R. Boese, D. Bläser, M. Nussbaumer, and T. M. Krygowski, Struct. Chem. 3, 363 (1992).

    Article  Google Scholar 

  27. 27

    T. Shikata, Yu. Sakai, and J. Watanabe, AIP Adv. 4, 067130 (2014).

    ADS  Article  Google Scholar 

  28. 28

    Yu. A. Merinov and N. V. Merinova, Zh. Fiz. Khim. 58, 623 (1984).

    Google Scholar 

  29. 29

    Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).

    Google Scholar 

  30. 30

    C. A. Angell, J. M. Sare, and E. J. Sare, J. Phys. Chem. 82, 2622 (1978).

    Article  Google Scholar 

  31. 31

    B. V. Deryagin, B. A. Altoiz, Yu. M. Popovskii, and E. Yu. Shibaeva, Dokl. Akad. Nauk SSSR 305, 1392 (1989).

    Google Scholar 

  32. 32

    B. A. Altoiz, Yu. M. Popovskij, and A. Yu. Popovskij, Mol. Mater. 5, 113 (1995).

    Google Scholar 

  33. 33

    W. V. Smith, J. Chem. Phys. 11, 110 (1943).

    ADS  Article  Google Scholar 

  34. 34

    S. P. Zhdanov and A. V. Kiselev, Zh. Fiz. Khim. 31, 2213 (1957).

    Google Scholar 

  35. 35

    T. S. Egorova, Yu. A. Zarif’yants, and V. F. Kiselev, Zh. Fiz. Khim. 36, 1458 (1962).

    Google Scholar 

  36. 36

    A. V. Kiselev, Intermolecular Interactions in Adsorption and Chromatography (Vyssh. Shkola, Moscow, 1986) [in Russian].

    Google Scholar 

  37. 37

    V. N. Zaitsev, Complex-Forming Silicas: Synthesis, Structure of the Grafted Layer and Surface Chemistry (Folio, Khar’kov, 1997) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S.N. Savin for assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. A. Altoiz.

Ethics declarations

The authors claim that there is no conflict of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Altoiz, B.A., Bondarev, V.N. Quasi-Macroscopic Boundary Structures in “Nonsimple” Fluids: Experiment and Model. Tech. Phys. 65, 696–702 (2020). https://doi.org/10.1134/S1063784220050023

Download citation