Technical Physics

, Volume 64, Issue 5, pp 596–605 | Cite as

Barodiffusion in Slow Flows of a Gas Mixture

  • V. M. ZhdanovEmail author


Barodiffusion in slow flows of a gas mixture is studied with an approximation using hydrodynamic equations of motion for the individual mixture components. It is shown that consideration of the viscous momentum transfer and the contribution of Knudsen layers for the mixture flowing in a channel has a considerable effect on the value of the barodiffusion factor. The relations are obtained for the mean diffusion fluxes of components and for the total flux of the mixture in a circular cylindrical capillary; these relations are valid for moderately small Knudsen numbers used for calculation of the diffusion baroeffect and separation effect when the gas mixture flows in a set of capillaries connecting two volumes. The modification of the relations for the barodiffusion factor (and for the diffusion slip coefficient cross-linked with it) allows interpreting the sign alteration of these effects observed experimentally for some gas mixtures at intermediate Knudsen numbers.



The author thanks Yu. Kagan for fruitful discussions and V.A. Zaznoba for the performed calculations.


The study is supported by the Russian Foundation for Basic Research (project no. 18-08-00211) and by by National Research Nuclear University MEPhI within the framework of the Russian Academic Excellence Project (contract no. 02.a03.21.0005, August 27, 2013).


  1. 1.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge Univ. Press, 1970).zbMATHGoogle Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz Fluid Mechanics (Nauka, Moscow, 1986).Google Scholar
  3. 3.
    V. Zhdanov, Yu. Kagan, and A. Sazykin, J. Exp. Theor. Phys. 15, 596 (1962).Google Scholar
  4. 4.
    E. P. Potanin, Zh. Tekh. Fiz. 53, 1777 (1983).Google Scholar
  5. 5.
    I. Shaposhnikov and Z. Gol’dberg, Zh. Eksp. Teor. Fiz. 23, 425 (1952).Google Scholar
  6. 6.
    A. M. Dykhne, A. F. Pal’, V. D. Pis’mennyi, V. V. Pichugin, A. N. Starostin, and M. D. Taran, J. Exp. Theor. Phys. 61, 1171 (1985).Google Scholar
  7. 7.
    S. P. D’yakov, Zh. Eksp. Teor. Fiz. 27, 283 (1954).MathSciNetGoogle Scholar
  8. 8.
    V. D. Borisevich, V. D. Borman, G. A. Sulaberidze, A. V. Tikhomirov, and V. I. Tokmantsev, Physical Principles of Gas-Mixture Separation in a Gas Centrifuge (MEI, Moscow, 2011).Google Scholar
  9. 9.
    V. M. Zhdanov, A. I. Karchevskii, E. P. Potanin, and A. L. Ustinov, Zh. Tekh. Fiz. 49, 1879 (1979).Google Scholar
  10. 10.
    V. M. Zhdanov, Zh. Tekh. Fiz. 37, 192 (1967).Google Scholar
  11. 11.
    J. P. Breton, Phys. A 50, 365 (1970).Google Scholar
  12. 12.
    V. M. Zhdanov, Adv. Colloid Interface Sci. 66, 1 (1996).CrossRefGoogle Scholar
  13. 13.
    S. Villani, Uranium Enrichment (Springer, 1976).Google Scholar
  14. 14.
    Isotopes: Properties, Synthesis, Applications Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 1.Google Scholar
  15. 15.
    L. Waldmann and K. H. Schmitt, Z. Naturforsch. A 16, 1343 (1961).CrossRefGoogle Scholar
  16. 16.
    P. E. Suetin and P. V. Volobuev, Zh. Tekh. Fiz. 34, 1107 (1964).Google Scholar
  17. 17.
    S. Pan and T. S. Storvik, J. Chem. Phys. 97, 2671 (1992).CrossRefGoogle Scholar
  18. 18.
    S. R. de Groot, and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).zbMATHGoogle Scholar
  19. 19.
    H. Grad, Commun. Pure Appl. Math. 2, 331 (1949).CrossRefGoogle Scholar
  20. 20.
    M. H. Johnson, Phys. Rev. 82, 298 (1951).Google Scholar
  21. 21.
    V. M. Zhdanov, Transport Phenomena in Multicomponent Plasma (Energoizdat, Moscow, 1982).Google Scholar
  22. 22.
    D. A. Frank-Kamenetskii, Introduction to Macrokinetics. Diffusion and Heat Transfer in Chemical Kinetics, 4th ed. (Intellekt, Dolgoprudnyi, 2008).Google Scholar
  23. 23.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).zbMATHGoogle Scholar
  24. 24.
    E. P. Potanin, Zh. Tekh. Fiz. 54, 803 (1984).Google Scholar
  25. 25.
    V. M. Zhdanov and G. A. Tirskiy, J. Appl. Math. Mech. 71, 718 (2007).CrossRefGoogle Scholar
  26. 26.
    V. M. Zhdanov and V. A. Zaznoba, J. Appl. Math. Mech. 45, 801 (1981).CrossRefGoogle Scholar
  27. 27.
    V. M. Zhdanov, J. Appl. Mech. Tech. Phys. 23, 201 (1982).CrossRefGoogle Scholar
  28. 28.
    V. M. Zhdanov, Phys. Rev. E 95, 033106 (2017).CrossRefGoogle Scholar
  29. 29.
    S. K. Loyalka, Phys. Fluids 14, 2599 (1971).CrossRefGoogle Scholar
  30. 30.
    I. N. Ivchenko, S. K. Loyalka, and R. V. Tompson, J. Vac. Sci. Technol. A 15, 2375 (1997).CrossRefGoogle Scholar
  31. 31.
    E. H. Kennard, Kinetic Theory of Gases (McGraw–Hill, New York, 1938).Google Scholar
  32. 32.
    L. H. Shendalman, J. Chem. Phys. 51, 2483 (1969).CrossRefGoogle Scholar
  33. 33.
    I. D. Pochuev, V. D. Seleznev, and P. E. Suetin, J. Appl. Mech. Tech. Phys. 15, 613 (1974).CrossRefGoogle Scholar
  34. 34.
    V. G. Chernyak, J. Appl. Mech. Tech. Phys. 23, 638 (1982).CrossRefGoogle Scholar
  35. 35.
    F. Sharipov and D. Kalempa, J. Vac. Sci. Technol. A 20, 814 (2002).CrossRefGoogle Scholar
  36. 36.
    H. Lang and K. Eger, Z. Phys. Chem. Neue Folge 68, 130 (1969).CrossRefGoogle Scholar
  37. 37.
    F. J. McCormack, Phys. Fluids 16, 2095 (1973).CrossRefGoogle Scholar
  38. 38.
    J. A. W. Huggil, Proc. R. Soc. A 212, 123 (1952).CrossRefGoogle Scholar
  39. 39.
    V. D. Seleznev, P. E. Suetin, and N. A. Smirnov, Zh. Tekh. Fiz. 45, 1499 (1975).Google Scholar
  40. 40.
    D. E. Fain, W. K. Brown, Proc. 10th Int. Symp. on Rarefied Gas Dynamics, Aspen, United States, 1976, Ed. by J. L. Potter (Plenum, New York, 1976), Vol. 1, p. 65.Google Scholar
  41. 41.
    V. Selesnev, B. Porodnov, V. Akinshin, V. Surguchev, and A. Tarin, in Rarefied Gas Dynamics, Ed. by O. M. Belotserkovskii, M. N. Kogan, S. S. Kutateladze, and A. K. Rebrov (Plenum, New York, 1985), Vol. 2, p. 1341.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations