Skip to main content
Log in

Dependence of Texture Tilt and Excitation Efficiency of Shear Waves for ZnO Films on Working Gas Pressure in a DC Magnetron System

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Dependence of the texture tilt and excitation efficiency of shear waves on the working gas pressure in an interval of 0.14–0.74 mTorr that corresponds to the transition from collisionless to almost diffusion deposition is studied for the ZnO films with a thickness of about 0.45–1.2 μm that are synthesized in a planar dc magnetron system. It is shown that an increase in the pressure from about 0.14–0.24 to 0.74 mTorr causes a decrease in the tilt angle of the column texture from ~25°–27° to ~7° and a decrease in the efficiency of acoustic excitation. Films that are synthesized at pressures of ~0.14–0.24 mTorr close to the transition from the Townsend to glow discharge exhibit the highest excitation efficiency of shear waves. For such films, the insertion loss reaches a minimum level at thicknesses of 0.45–0.75 μm and the number of echo pulses amounts to 20–40, so that the reflected sound can be observed with a delay of up to 80 μs at a length of an acoustic guiding crystal of 10 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Rughoobur, M. De Miguel-Ramos, T. Mirea, M. Clement, J. Olivares, B. Díaz-Durán, J. Sangrador, I. Miele, W. I. Milne, E. Iborra, and A. J. Flewitt, Appl. Phys. Lett. 108, 034103 (2016). https://doi.org/10.1063/1.4940683

    Article  ADS  Google Scholar 

  2. G. Rughoobur, L. Garcia-Gancedo, A. J. Flewitt, W. I. Milne, M. De Miguel-Ramos, M. Clement, T. Mirea, J. Olivares, and E. Iborra, Proc. European Frequency and Time Forum, Neuchatel, Switzerland, 2014, p. 297. https://doi.org/10.1109/EFTF.2014.7331491

  3. Y. Yoshino, J. Appl. Phys. 105, 061623 (2009). https://doi.org/10.1063/1.3072691

    Article  ADS  Google Scholar 

  4. M. Prasad, V. Sahula, and V. K. Khanna, IEEE Trans. Device Mater. Reliab. 14, 545 (2014). https://doi.org/10.1109/TDMR.2013.2271245

    Article  Google Scholar 

  5. M. Link, M. Schreiter, J. Weber, R. Gabl, D. Pitzer, R. Primig, W. Wersing, M. B. Assouar, and O. Elmazria, J. Vac. Sci. Technol., A 24, 218 (2006). https://doi.org/10.1116/1.2165658

    Article  Google Scholar 

  6. A. L. Nalamwar, R. S. Wagers, and M. Epstein, J. Appl. Phys. 48, 2175 (1977). https://doi.org/10.1063/1.324017

    Article  ADS  Google Scholar 

  7. Z. Yan, X. Y. Zhou, G. K. H. Pang, T. Zhang, W. L. Liu, J. G. Cheng, Z. T. Song, S. L. Feng, L. H. Lai, J. Z. Chen, and Y. Wang, Appl. Phys. Lett. 90, 143503 (2007). https://doi.org/10.1063/1.2719149

    Article  ADS  Google Scholar 

  8. L. Qin, Q. Chen, H. Cheng, Q. Chen, J.-F. Li, and Q.-M. Wang, J. Appl. Phys. 110, 094511 (2011). https://doi.org/10.1063/1.3657781

    Article  ADS  Google Scholar 

  9. M. Dwivedi, J. Bhargava, A. Sharma, V. Vimal, G. Eranna, IEEE Sens. J. 14, 1577 (2014). https://doi.org/10.1109/JSEN.2014.2298879

    Article  ADS  Google Scholar 

  10. S. G. Alekseev, Yu. V. Gulyaev, I. M. Kotelyanskii, and G. D. Mansfel’d, Phys.-Usp. 48, 855 (2005).

    Article  Google Scholar 

  11. F. S. Hickernell, Proc. IEEE 64, 631 (1976).

    Article  Google Scholar 

  12. L. A. Coldren, Proc. IEEE 64, 769 (1976).

    Article  Google Scholar 

  13. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

    Article  ADS  Google Scholar 

  14. K.-L. Ching, G. Li, Y.-L. Ho, and H.-S. Kwok, CrystEngComm 18, 779 (2016). https://doi.org/10.1039/C5CE02164B

    Article  Google Scholar 

  15. A. B. Djurisic, A. M. C. Ng, and X. Y. Chen, Prog. Quantum Electron. 34, 191 (2010). https://doi.org/10.1016/j.pquantelec.2010.04.001

    Article  ADS  Google Scholar 

  16. N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, J. Cryst. Growth 130, 269 (1993).

    Article  ADS  Google Scholar 

  17. T. Kawamoto, T. Yanagitani, M. Matsukawa, and Y. Watanabe, Jpn. J. Appl. Phys. 46, 4660 (2007). https://doi.org/10.1143/JJAP.46.4660

    Article  ADS  Google Scholar 

  18. S. Takayanagi, T. Yanagitani, M. Matsukawa, and Y. Watanabe, Proc. IEEE Int. Ultrasonics Symp., San Diego, United States, 2010, p. 1060. https://doi.org/10.1109/ULTSYM.2010.5935655

  19. S. Takayanagi, T. Yanagitani, M. Matsukawa, and Y. Watanabe, Proc. IEEE Int. Ultrasonics Symp., Orlando, United States, 2011, p. 2317. https://doi.org/10.1109/ULTSYM.2011.0575

  20. T. Yanagitani, N. Mishima, M. Matsukawa, and Y. Watanabe, IEEE Trans. Ultrason., Ferroelectr, Freq. Control 54, 701 (2007). https://doi.org/10.1109/TUFFC.2007.303

    Article  Google Scholar 

  21. T. Yanagitani, M. Kiuchi, M. Matsukawa, and Y. Watanabe, IEEE Trans. Ultrason., Ferroelectr, Freq. Control 54, 1680 (2007). https://doi.org/10.1109/TUFFC.2007.439

    Article  Google Scholar 

  22. H. W. Lehmann and R. Widmer, J. Appl. Phys. 44, 3868 (1973). https://doi.org/10.1063/1.1662864

    Article  ADS  Google Scholar 

  23. Z. Zhao, C. Pan, C. Gao, and C. Wang, Proc. IEEE Int. Vacuum Electronics Conf., Beijing, China, 2015. https://doi.org/10.1109/IVEC.2015.7224023

  24. A. G. Veselov, V. I. Elmanov, O. A. Kiryasova, and Yu. V. Nikulin, Tech. Phys. 62, 470 (2017). https://doi.org/10.1134/S1063784217030264

    Article  Google Scholar 

  25. A. G. Veselov, V. I. Elmanov, O. A. Kiryasova, and Yu. V. Nikulin, Tech. Phys. 63, 95 (2018). https://doi.org/10.1134/S1063784218010279

    Article  Google Scholar 

  26. M. Minakata, N. Chubachi, and Y. Kikichi, Jpn. J. Phys. 12, 474 (1973).

    Article  ADS  Google Scholar 

  27. T. Yanagitani and M. Kiuchi, J. Appl. Phys. 102, 044115 (2007). https://doi.org/10.1063/1.2772589

    Article  ADS  Google Scholar 

  28. T. Yanagitani and M. Kiuchi, Proc. IEEE Ultrasonics Symp., New York, United States, 2007, p. 1413.

  29. R. E. Somekh, J. Vac. Sci. Technol., A 2, 1285 (1984). https://doi.org/10.1116/1.572396

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task and partially was supported by Russian Foundation for Basic Research, projects nos. 16-37-60052, 16-29-14058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Veselov.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselov, A.G., Elmanov, V.I., Kiryasova, O.A. et al. Dependence of Texture Tilt and Excitation Efficiency of Shear Waves for ZnO Films on Working Gas Pressure in a DC Magnetron System. Tech. Phys. 64, 730–736 (2019). https://doi.org/10.1134/S1063784219050256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219050256

Navigation