Advertisement

Technical Physics

, Volume 64, Issue 5, pp 654–659 | Cite as

Composition, Structure, and Mechanical Properties of (Ti–Hf)N Coatings on Titanium Alloy

  • V. M. ProkhorovEmail author
  • E. V. Gladkikh
  • L. A. Ivanov
  • V. V. Aksenenkov
  • A. N. Kirichenko
PHYSICAL SCIENCE OF MATERIALS
  • 21 Downloads

Abstract

Variations of the composition, structure, and mechanical properties (hardness, elastic modulus) of (Ti–Hf)N coatings with increasing Hf content (Ti : Hf ratio) are reported. As test samples, VT6 titanium alloy plates covered by a magnetron-sputtered titanium hafnium nitride coating have been taken. To see how the coating characteristics depend on Hf content, samples with rated compositions (Ti0.9Hf0.1)N, (Ti0.85Hf0.15)N, (Ti0.8Hf0.2)N, and (Ti0.7Hf0.3)N have been studied. The surface and depth element distributions have been found, and the phase composition and the dependence of the titanium nitride lattice parameter on Hf content in the coating have been determined. The depth profiling of a coating’s hardness and elastic modulus has been conducted by instrumental indentation. Hardness and elastic modulus have been found to be maximal (~35 and ~500 GPa, respectively) in (Ti0.85Hf0.15)N and (Ti0.8Hf0.2)N coatings. In addition, the depth distribution of Hf in these coatings has turned out to be most uniform.

Notes

REFERENCES

  1. 1.
    J. Musil, in Nanocomposite Thin Films and Coatings, Ed. by S. Zhang and N. Ali (Imperial College Press, London, 2007), pp. 281–328.Google Scholar
  2. 2.
    R. A. Andrievski and A. M. Glezer, Phys.-Usp. 52, 315 (2009).  https://doi.org/10.3367/UFNe.0179.200904a.0337 CrossRefGoogle Scholar
  3. 3.
    A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnology (Fizmatlit, Moscow, 2009).Google Scholar
  4. 4.
    A. D. Pogrebnyak, O. V. Sobol’, V. M. Beresnev, P. V. Turbin, S. N. Dub, G. V. Kirik, and A. E. Dmitrenko, Tech. Phys. Lett. 35, 925 (2009).CrossRefGoogle Scholar
  5. 5.
    A. D. Pogrebnjak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, Phys.-Usp. 52, 29 (2009).  https://doi.org/10.3367/UFNe.0179.200901b.0035 CrossRefGoogle Scholar
  6. 6.
    F. F. Komarov, S. V. Konstantiniv, V. V. Pilko, A. D. Pogrebnjak, C. Kozak, and M. Opielak, Acta Phys. Pol., A 125, 1292 (2014).CrossRefGoogle Scholar
  7. 7.
    V. M. Beresnev, A. D. Pogrebnyak, O. V. Sobol’, V. V. Grudnitskii, P. V. Turbin, D. A. Kolesnikov, and G. N. Tolmacheva, Fiz. Inzh. Poverkhn. 8, 124 (2010).Google Scholar
  8. 8.
    V. V. Grudnitskii, M. Yu. Smolyakova, U. S. Nemchenko, V. M. Beresnev, A. D. Pogrebnyak, O. V. Sobol’, D. A. Kolesnikov, P. V. Turbin, and M. V. Kaverin, Vopr. At. Nauki Tekh., Ser.: Vak., Chist. Mater., Sverkhprovodn., No. 6, 179 (2011).Google Scholar
  9. 9.
    A. D. Pogrebnyak, A. P. Shpak, V. M. Beresnev, G. V. Kirik, D. A. Kolesnikov, F. F. Komarov, P. Konarski, N. A. Makhmudov, M. V. Kaverin, and V. V. Grudnitskii, Tech. Phys. Lett. 37, 636 (2011).CrossRefGoogle Scholar
  10. 10.
    A. D. Pogrebnyak, A. G. Ponomarev, D. A. Kolesnikov, V. M. Beresnev, F. F. Komarov, S. S. Mel’nik, and M. V. Kaverin, Tech. Phys. Lett. 38, 623 (2012).CrossRefGoogle Scholar
  11. 11.
    D. A. Kolesnikov, V. V. Grudnitskii, V. I. Gritsenko, O. A. Druchinina, G. V. Kirik, A. M. Makhmud, P. V. Turbin, L. V. Malikov, M. S. Prozorova, I. V. Serdyuk, A. M. Rudyuk, and E. V. Beresneva, Fiz. Inzh. Poverkhn. 10, 90 (2012).Google Scholar
  12. 12.
    A. D. Pogrebnjak, J. Nanomater. 2013, 780125 (2013).  https://doi.org/10.1155/2013/780125
  13. 13.
    I. N. Toryanik, V. V. Grudnitskii, V. M. Beresnev, O. V. Sobol’, S. V. Litovchenko, P. V. Turbin, I. V. Serdyuk, and I. Yu. Goncharov, Probl. At. Sci. Technol., No. 2, 149 (2014).Google Scholar
  14. 14.
    A. I. Kul’ment’ev, O. P. Kul’ment’eva, and A. M. Makhmud, Kompressornoe Energ. Mashinostr., No. 2, 36 (2011).Google Scholar
  15. 15.
    I. I. Vasil’ev, V. A. Usenko, M. M. Grebenshchikova, I. F. Faizrakhmanov, and M. M. Mironov, RF Patent No. 2554773 (2014).Google Scholar
  16. 16.
    Zh. K. Manirambona, Ross. Vet. Zh. Melkie Domashnie Dikie Zhivotn., No. 6, 9 (2014).Google Scholar
  17. 17.
    A. A. Andreev, G. I. Kostyuk, and N. A. Minaev, Otkrytye Inf. Komp’yut. Tekhnol., No. 53, 71 (2012).Google Scholar
  18. 18.
    http://maud.radiographema.eu.Google Scholar
  19. 19.
    A. F. Gualtieri, J. Appl. Crystallogr. 33, 267 (2000).CrossRefGoogle Scholar
  20. 20.
    G. V. Samsonov and I. M. Vinitskii, Refractory Compounds (Metallurgiya, Mosccow, 1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. M. Prokhorov
    • 1
    • 2
    Email author
  • E. V. Gladkikh
    • 1
    • 2
  • L. A. Ivanov
    • 1
  • V. V. Aksenenkov
    • 1
  • A. N. Kirichenko
    • 1
  1. 1.Technological Institute for Superhard and Novel Carbon MaterialsMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)MoscowRussia

Personalised recommendations