Technical Physics

, Volume 64, Issue 5, pp 606–614 | Cite as

Structure of Magnetic Plasma Fluctuations in the Uragan-3M Torsatron at Rare Collision Frequencies

  • V. K. Pashnev
  • E. L. Sorokovoy
  • A. A. PetrushenyaEmail author
  • F. I. Ozherel’ev


Fluctuations of the poloidal component of the plasma magnetic field in the frequency range of 0.5–50 kHz are studied in the Uragan-3M (U-3M) torsatron. Hydrogen plasma is produced and heated by RF fields at frequencies close to that of the ion cyclotron. The studies are carried out using a set of 15 magnetic sensors installed in one of the torus cross sections. RF heating provided the plasma with rare collision frequencies and the presence of the bootstrap current. The study is carried out when the maximum amplitude of magnetic fluctuations is observed and their connection with the plasma energy content is noticeable. Two types of vibrations are observed. In the first type, the current structure rotates with a certain frequency mainly in the direction of the rotation of electrons in the magnetic field, and the amplitude varies slowly with time (the rotating structure). For the second type, the spatial structure does not rotate, but its amplitude changes with a certain frequency (the standing structure). The frequencies of fluctuations and rotations are close for structures with a given poloidal wave number. The standing vibration structures with different poloidal wave numbers in this frequency range are correlated. The maximum amplitude of the rotating structures is observed with m = 2, and for the standing structures with m = 3 and reaches the values of \(\tilde {B}\) ≤ 0.3 G in the confinement region. The vibration frequency does not depend on poloidal wave number m for the studied cases; m = 0, 1, 2, 3.



We are grateful to colleagues for the useful discussion and to the crew of the U-3M facility for providing the experiment. Special thanks go to V.S. Voitsena for helpful discussions and comments in the course of the preparation of this article.


  1. 1.
    A. B. Mikhailovskii, Plasma Instabilities in Magnetic Confinement Systems (Atomizdat, Moscow, 1978).Google Scholar
  2. 2.
    N. Winsor, J. L. Johnson, and J. M. Dawson, Phys. Fluids 11, 2448 (1968).CrossRefGoogle Scholar
  3. 3.
    C. Z. Cheng, L. Chen, and M. S. Chance, Ann. Phys. 161, 21 (1985).CrossRefGoogle Scholar
  4. 4.
    W. W. Heidbrink, E. J. Strait, M. S. Chu, and A. D. Turnbull, Phys. Rev. Lett. 71, 855 (1993).CrossRefGoogle Scholar
  5. 5.
    A. B. Mikhailovskii and S. E. Sharapov, Plasma Phys. Rep. 25, 803 (1999).Google Scholar
  6. 6.
    K. N. Stepanov, Plasma Phys. Controlled Fusion 38, A13 (1996).CrossRefGoogle Scholar
  7. 7.
    W. W. Heidbrink, Phys. Plasmas 15, 055501 (2008).CrossRefGoogle Scholar
  8. 8.
    R. M. Sinclair, S. Yoshikawa, W. L. Harries, et al., Phys. Fluids 8, 118 (1965).CrossRefGoogle Scholar
  9. 9.
    V. V. Chechkin, I. P. Fomin, L. I. Grigor‘eva, et al., Nucl. Fusion 36, 133 (1996).CrossRefGoogle Scholar
  10. 10.
    V. V. Chechkin, L. I. Grigor’eva, R. O. Pavlichenko, A. Ye. Kulaga, N. V. Zamanov, V. E. Moiseenko, P.  Ya.  Burchenko, A. V. Lozin, S. A. Tsybenko, I.   K.   Tarasov, I. M. Pankratov, D. L. Grekov, A. A. Beletskii, A. A. Kasilov, V. S. Voitsenya, et al., Plasma Phys. Rep. 40, 601 (2014).CrossRefGoogle Scholar
  11. 11.
    A. V. Longinov and K. N. Stepanov, in High-Frequency Plasma Heating, Ed. by A. G. Litvak (American Inst. of Physics, New York, 1992), pp. 93–238.Google Scholar
  12. 12.
    V. K. Pashnev, I. K. Tarasov, D. A. Sitnikov, et al., Probl. At. Sci. Technol., No. 1, 15 (2013).Google Scholar
  13. 13.
    A. A. Kasilov, L. I. Grigor’eva, V. V. Chechkin, et al., Probl. Probl. At. Sci. Technol., No. 1, 24 (2015).Google Scholar
  14. 14.
    V. K. Pashnev, E. L. Sorokovoy, A. A. Petrushenya, et al., Probl. At. Sci. Technol., No. 6, 24 (2010).Google Scholar
  15. 15.
    V. K. Pashnev and E. L. Sorokovoy, Probl. At. Sci. Technol., No. 6, 31 (2008).Google Scholar
  16. 16.
    V. V. Chechkin, L. I. Grigor’eva, Ye. L. Sorokovoy, E. L. Sorokovoy, A. A. Beletskii, A. S. Slavnyj, Yu. S. Lavrenovich, E. D. Volkov, P. Ya. Burchenko, S. A. Tsybenko, A. V. Lozin, A. Ye. Kulaga, N. V. Zamanov, D. V. Kurilo, Yu. K. Mironov, and V. S. Romanov, Plasma Phys. Rep. 35, 852 (2009).CrossRefGoogle Scholar
  17. 17.
    V. K. Pashnev, E. L. Sorokovoy, V. L. Berezhnyj, et al., Probl. At. Sci. Technol., No. 6, 17 (2010).Google Scholar
  18. 18.
    A. I. Morozov and L. S. Solov’ev, in Plasma Theory Problems, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1963), Vol. 2, pp. 51, 70.Google Scholar
  19. 19.
    M. B. Dreval, Yu. V. Yakovenko, E. L. Sorokovoy, et al., Phys. Plasmas 23, 022506 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. K. Pashnev
    • 1
  • E. L. Sorokovoy
    • 1
  • A. A. Petrushenya
    • 1
    Email author
  • F. I. Ozherel’ev
    • 1
  1. 1.Institute of Plasma Physics, National Science Center Kharkiv Institute of Physics and TechnologyKharkivUkraine

Personalised recommendations