Skip to main content
Log in

Structure of Magnetic Plasma Fluctuations in the Uragan-3M Torsatron at Rare Collision Frequencies

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Fluctuations of the poloidal component of the plasma magnetic field in the frequency range of 0.5–50 kHz are studied in the Uragan-3M (U-3M) torsatron. Hydrogen plasma is produced and heated by RF fields at frequencies close to that of the ion cyclotron. The studies are carried out using a set of 15 magnetic sensors installed in one of the torus cross sections. RF heating provided the plasma with rare collision frequencies and the presence of the bootstrap current. The study is carried out when the maximum amplitude of magnetic fluctuations is observed and their connection with the plasma energy content is noticeable. Two types of vibrations are observed. In the first type, the current structure rotates with a certain frequency mainly in the direction of the rotation of electrons in the magnetic field, and the amplitude varies slowly with time (the rotating structure). For the second type, the spatial structure does not rotate, but its amplitude changes with a certain frequency (the standing structure). The frequencies of fluctuations and rotations are close for structures with a given poloidal wave number. The standing vibration structures with different poloidal wave numbers in this frequency range are correlated. The maximum amplitude of the rotating structures is observed with m = 2, and for the standing structures with m = 3 and reaches the values of \(\tilde {B}\) ≤ 0.3 G in the confinement region. The vibration frequency does not depend on poloidal wave number m for the studied cases; m = 0, 1, 2, 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. B. Mikhailovskii, Plasma Instabilities in Magnetic Confinement Systems (Atomizdat, Moscow, 1978).

    Google Scholar 

  2. N. Winsor, J. L. Johnson, and J. M. Dawson, Phys. Fluids 11, 2448 (1968).

    Article  ADS  Google Scholar 

  3. C. Z. Cheng, L. Chen, and M. S. Chance, Ann. Phys. 161, 21 (1985).

    Article  ADS  Google Scholar 

  4. W. W. Heidbrink, E. J. Strait, M. S. Chu, and A. D. Turnbull, Phys. Rev. Lett. 71, 855 (1993).

    Article  ADS  Google Scholar 

  5. A. B. Mikhailovskii and S. E. Sharapov, Plasma Phys. Rep. 25, 803 (1999).

    ADS  Google Scholar 

  6. K. N. Stepanov, Plasma Phys. Controlled Fusion 38, A13 (1996).

    Article  ADS  Google Scholar 

  7. W. W. Heidbrink, Phys. Plasmas 15, 055501 (2008).

    Article  ADS  Google Scholar 

  8. R. M. Sinclair, S. Yoshikawa, W. L. Harries, et al., Phys. Fluids 8, 118 (1965).

    Article  ADS  Google Scholar 

  9. V. V. Chechkin, I. P. Fomin, L. I. Grigor‘eva, et al., Nucl. Fusion 36, 133 (1996).

    Article  ADS  Google Scholar 

  10. V. V. Chechkin, L. I. Grigor’eva, R. O. Pavlichenko, A. Ye. Kulaga, N. V. Zamanov, V. E. Moiseenko, P.  Ya.  Burchenko, A. V. Lozin, S. A. Tsybenko, I.   K.   Tarasov, I. M. Pankratov, D. L. Grekov, A. A. Beletskii, A. A. Kasilov, V. S. Voitsenya, et al., Plasma Phys. Rep. 40, 601 (2014).

    Article  ADS  Google Scholar 

  11. A. V. Longinov and K. N. Stepanov, in High-Frequency Plasma Heating, Ed. by A. G. Litvak (American Inst. of Physics, New York, 1992), pp. 93–238.

    Google Scholar 

  12. V. K. Pashnev, I. K. Tarasov, D. A. Sitnikov, et al., Probl. At. Sci. Technol., No. 1, 15 (2013).

  13. A. A. Kasilov, L. I. Grigor’eva, V. V. Chechkin, et al., Probl. Probl. At. Sci. Technol., No. 1, 24 (2015).

  14. V. K. Pashnev, E. L. Sorokovoy, A. A. Petrushenya, et al., Probl. At. Sci. Technol., No. 6, 24 (2010).

  15. V. K. Pashnev and E. L. Sorokovoy, Probl. At. Sci. Technol., No. 6, 31 (2008).

  16. V. V. Chechkin, L. I. Grigor’eva, Ye. L. Sorokovoy, E. L. Sorokovoy, A. A. Beletskii, A. S. Slavnyj, Yu. S. Lavrenovich, E. D. Volkov, P. Ya. Burchenko, S. A. Tsybenko, A. V. Lozin, A. Ye. Kulaga, N. V. Zamanov, D. V. Kurilo, Yu. K. Mironov, and V. S. Romanov, Plasma Phys. Rep. 35, 852 (2009).

    Article  ADS  Google Scholar 

  17. V. K. Pashnev, E. L. Sorokovoy, V. L. Berezhnyj, et al., Probl. At. Sci. Technol., No. 6, 17 (2010).

  18. A. I. Morozov and L. S. Solov’ev, in Plasma Theory Problems, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1963), Vol. 2, pp. 51, 70.

  19. M. B. Dreval, Yu. V. Yakovenko, E. L. Sorokovoy, et al., Phys. Plasmas 23, 022506 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to colleagues for the useful discussion and to the crew of the U-3M facility for providing the experiment. Special thanks go to V.S. Voitsena for helpful discussions and comments in the course of the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Petrushenya.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashnev, V.K., Sorokovoy, E.L., Petrushenya, A.A. et al. Structure of Magnetic Plasma Fluctuations in the Uragan-3M Torsatron at Rare Collision Frequencies. Tech. Phys. 64, 606–614 (2019). https://doi.org/10.1134/S1063784219050189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219050189

Navigation