Technical Physics

, Volume 64, Issue 5, pp 642–646 | Cite as

Experimental Evaluation of Structural and Temporal Characteristics of Material Fracture Based on Magnetic Pulse Loading of Ring Samples

  • V. A. Morozov
  • Yu. V. PetrovEmail author
  • V. D. SukhovEmail author


The study of fracture of thin aluminum rings due to shock loading generated by magnetic-pulse method was performed. This method provides experimental results on dynamic fracture under conditions of pure tension for a wide range of loading conditions. To simulate rapture of the ring samples a structural-temporal fracture criterion was applied. This criterion allows for analysis of the effects which are characteristic for the dynamic experiments. The fracture incubation time value and ultimate stresses are calculated for the aluminum rings subjected to pulse loading. An analytical relationship between the critical stress and the fracture time are obtained and this relation is in good agreement with the experimental data.



This work was partly supported by the Russian Foundation for Basic Research (projects nos. 17-01-00618, 18-51-80008 BRICS).


  1. 1.
    V. A. Morozov, Yu. V. Petrov, A. A. Lukin, V. M. Kats, A. G. Udovik, S. A. Atroshenko, D. A. Gribanov, and G. D. Fedorovsky, Tech. Phys. 56, 797 (2011).CrossRefGoogle Scholar
  2. 2.
    V. A. Morozov, Yu. V. Petrov, A. A. Lukin, V. M. Kats, S. A. Atroshenko, G. D. Fedorovskii, D. A. Gribanov, and O. K. Zaichenko, Proc. 13th Int. Conf. on Fracture, Beijing, China, 2013, p. s17-043.Google Scholar
  3. 3.
    V. A. Morozov, Yu. V. Petrov, A. A. Lukin, S. A. Atroshenko, and D. A. Gribanov, Tech. Phys. 59, 1338 (2014).CrossRefGoogle Scholar
  4. 4.
    Y. F. Gunko, O. K. Zaychenko, A. A. Lukin, V. A. Morozov, and N. A. Gunko, Proc. 2015 Int. Conf. on Mechanics, St. Petersburg, Russia, 2015, p. 269.Google Scholar
  5. 5.
    O. K. Zaychenko, A. A. Lukin, and V. A. Morozov, Mater. Phys. Mech. 26, 81 (2016).Google Scholar
  6. 6.
    Yu. V. Petrov, Dokl. Phys. 49, 246 (2004).CrossRefGoogle Scholar
  7. 7.
    N. Selyutina and Y. Petrov, Proc. Struct. Integr. 2, 438 (2016).CrossRefGoogle Scholar
  8. 8.
    N. A. Zlatin, G. S. Pugachev, S. M. Mochalov, and A. M. Bragov, Fiz. Tverd. Tela 17, 2599 (1975).Google Scholar
  9. 9.
    Yu. V. Petrov, Dokl. Phys. 49, 246 (2004).CrossRefGoogle Scholar
  10. 10.
    Yu. V. Petrov and A. A. Utkin, Tech. Phys. 60, 1162 (2015).CrossRefGoogle Scholar
  11. 11.
    N. V. Mikhailova, G. A. Volkov, Yu. I. Meshcheryakov, Yu. V. Petrov, and A. A. Utkin, Tech. Phys. 62, 547 (2017).CrossRefGoogle Scholar
  12. 12.
    Yu. V. Petrov and P. A. Glebovskii, Tech. Phys. 49, 1447 (2004).CrossRefGoogle Scholar
  13. 13.
    V. A. Bratov and Yu. V. Petrov, Dokl. Phys. 52, 565 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations