Technical Physics

, Volume 64, Issue 5, pp 701–707 | Cite as

Prediction of Radiation-Induced Light Absorption in Optical Fibers with an Undoped Silica Core for Space Applications

  • P. F. KashaikinEmail author
  • A. L. Tomashuk
  • M. Yu. Salganskii
  • I. S. Azanova
  • M. K. Tsibinogina
  • T. V. Dimakova
  • A. N. Gur’yanov
  • E. M. Dianov


Radiation-induced absorption (RIA) of light in five isotropic optic fibers (OFs) with a core of undoped silica glass (SiO2) and a fluorosilicate cladding and one birefringent OF of the “PANDA” type of the same chemical composition was measured at a wavelength λ = 1.55 μm under γ-irradiation to a dose of 1 kGy (∼ 1 Gy/s), 15–45 min after completion of irradiation, and in a few months at temperatures +25 and –60°C. An extrapolation of the RIA after irradiation in the framework of the kinetic model of the nth order, which gave a forecast of the RIA for isotropic OFs of ∼1.1 and ∼ 0.3 ± 0.1 dB/km at –60 and +25°C, respectively, was made to assess the RIA at the end of a 15-year mission in space. It has been concluded that it is possible to use at least 4–5 km of OF in space under conditions of temperature variation within ±60°C at a maximum dose of 1 kGy and a mission duration of 15 years. It has also been established that the RIA will not have been higher in the birefringent OF than in the isotropic ones by the end of such a mission.



The study was supported by the Ministry of Education and Science of the Russian Federation, project no. RFMEFI60417X0183.


  1. 1.
    E. J. Friebele, M. E. Gingerich, and D. L. Griscom, Proc. SPIE 1791, 177 (1992).CrossRefGoogle Scholar
  2. 2.
    E. J. Friebele, C. G. Askinsa, G. A. Millerb, J. R. Peelea, and L. R. Wasserman, Proc. SPIE 5554, 120 (2004).CrossRefGoogle Scholar
  3. 3.
    G. Krabshuis, A. Amezcua-Correa, F. Gooijer, G. Melin, G. Kuyt, F. J. Achten, S. G. F. Geerings, and M. Bigot-Astruc, US Patent No. 9405062 (2016).Google Scholar
  4. 4.
    H. Lydtin, J. Lightwave Technol. 4, 1034 (1986).CrossRefGoogle Scholar
  5. 5.
    A. M. Kurbatov and R. A. Kurbatov, Tech. Phys. Lett. 36, 789 (2010). CrossRefGoogle Scholar
  6. 6.
    A. M. Kurbatov and R. A. Kurbatov, RF Patent No. 2472188 (2013).Google Scholar
  7. 7.
    A. L. Tomashuk, M. Yu. Salgansky, P. F. Kashaykin, V. F. Khopin, A. I. Sultangulova, K. N. Nishchev, S. E. Borisovsky, A. N. Guryanov, and E. M. Dianov, J. Lightwave Technol. 32, 213 (2014).CrossRefGoogle Scholar
  8. 8.
    P. F. Kashaykin, A. L. Tomashuk, M. Yu. Salgansky, A. N. Abramov, K. N. Nishchev, A. N. Guryanov, and E. M. Dianov, J. J. Lightwave Technol. 33, 1788 (2015).CrossRefGoogle Scholar
  9. 9.
    S. Girard, C. Marcandella, A. Alessi, A. Boukenter, Y. Ouerdane, N. Richard, Ph. Paillet, M. Gaillardin, and M. Raine, IEEE Trans. Nucl. Sci. 59, 2894 (2012).CrossRefGoogle Scholar
  10. 10.
    D. L. Griscom, J. Non-Cryst. Solids 352, 2601 (2006).CrossRefGoogle Scholar
  11. 11.
    P. F. Kashaykin, A. L. Tomashuk, M. Yu. Salgansky, A. N. Abramov, L. D. Iskhakova, N. S. Lobanov, K. N. Nishchev, A. N. Guryanov, and E. M. Dianov, Proc. SPIE 9507, 950705 (2015).CrossRefGoogle Scholar
  12. 12.
    X. Glavas, L. Lembo, W. Haraki, and Sh. Claxton, Proc. SPIE 3440, 120 (1998).CrossRefGoogle Scholar
  13. 13.
    E. J. Friebele, C. G. Askins, C. M. Shaw, M. E. Gingerich, C. C. Harrington, D. L. Griscom, T. Tsai, U. Paek, and W. H. Schmidt, Appl. Opt. 30, 1944 (1991).CrossRefGoogle Scholar
  14. 14.
    M. J. Lu Valle, E. J. Friebele, F. V. Dimarcello, G. A. Miller, E. M. Monberg, L. R. Wasserman, P. W. Wisk, M. F. Yan, and E. M. Birtch, Proc. SPIE 6193, 61930J (2006).CrossRefGoogle Scholar
  15. 15.
    J. D. O. McFadden, R. Greenwell, J. Hatch, C. Barnes, D. Pentrack, and D. Scott, Proc. SPIE 2811, 77 (1996).CrossRefGoogle Scholar
  16. 16.
    P. F. Kashaykin, A. L. Tomashuk, M. Yu. Salgansky, A. N. Guryanov, and E. M. Dianov, J. Appl. Phys. 121, 213104 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. F. Kashaikin
    • 1
    Email author
  • A. L. Tomashuk
    • 1
  • M. Yu. Salganskii
    • 2
  • I. S. Azanova
    • 3
  • M. K. Tsibinogina
    • 3
  • T. V. Dimakova
    • 3
  • A. N. Gur’yanov
    • 2
  • E. M. Dianov
    • 1
  1. 1.Fiber Optics Research Center, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Chemistry of High-Purity Substances, Russian Academy of SciencesNizhny NovgorodRussia
  3. 3.Perm Scientific–Industrial Instrument Making CompanyPermRussia

Personalised recommendations