Skip to main content
Log in

Influence of High-Temperature Annealing on the Resistance to High Strain Rate and Fracture of Tantalum at Temperatures of 20 and 500°C

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Two series of shock-wave experiments have been conducted in order to measure the Hugoniot elastic limit and determine the strain rate dependence of critical fracture stress for tantalum experiencing spall fracture. Tantalum specimens have been preannealed in vacuum at 1000°C. The evolution of elastoplastic compression shock waves at room and elevated up to 500°C temperatures has been presented from complete wave profiles recorded by a VISAR laser Doppler velocimeter. The spall strength dependence on the strain rate during the expansion of the material in a rarefaction wave has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. M. Isbell, V. R. Christman, and S. G. Babcock, Measurements of Dynamic Properties of Materials, Vol. VI: Tantalum (General Motors Technical Center, Warren, 1971).

  2. M. D. Furnish, W. D. Reinhart, W. M. Trott, L. C. Chhabildas, and T. J. Vogler, AIP Conf. Proc. 845, 615 (2006). https://doi.org/10.1063/1.2263397

    Article  ADS  Google Scholar 

  3. J. R. Asay, T. Ao, T. J. Vogler, J.-P. Davis, and G. T. Gray III, J. Appl. Phys. 106, 073515 (2009). https://doi.org/10.1063/1.3226882

    Article  ADS  Google Scholar 

  4. S. V. Razorenov, G. I. Kanel, G. V. Garkushin, and O. N. Ignatova, Phys. Solid State 54, 790 (2012). https://doi.org/10.1134/S1063783412040233

    Article  ADS  Google Scholar 

  5. B. Hammel, D. C. Swift, B. El-Dasher, M. Kumar, G. Collins, and J. Florando, AIP Conf. Proc. 1426, 931 (2012). https://doi.org/10.1063/1.3686430

    Article  ADS  Google Scholar 

  6. G. V. Garkushin, O. N. Ignatova, A. M. Podurets, and S. V. Razorenov, Deform. Razrushenie Mater. 4, 33 (2013).

    Google Scholar 

  7. E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 115, 243502 (2014). https://doi.org/10.1063/1.4885047

    Article  ADS  Google Scholar 

  8. J. R. Asay, T. J. Vogler, T. Ao, and J. L. Ding, J. Appl. Phys. 109, 073507 (2011). https://doi.org/10.1063/1.3562178

    Article  ADS  Google Scholar 

  9. G. I. Kanel and S. V. Razorenov, Shockwave Loading of Metals. Movement of the Sample Surface (Inst. Khim. Fiz., Chernogolovka, 1989).

    Google Scholar 

  10. S. V. Razorenov, G. I. Kanel, G. V. Garkushin, and A. S. Savinykh, RF Patent No. 2497096 (2013).

  11. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972). https://doi.org/10.1063/1.1660986

    Article  ADS  Google Scholar 

  12. R. G. McQueen and S. P. Marsh, Report No. GMX-6-566 (Los Alamos Sci. Lab., Los Alamos, 1964), p. 51.

  13. G. I. Kanel, S. V. Razorenov, G. V. Garkushin, A. V. Pavlenko, and S. N. Malyugina, Phys. Solid State 58, 1191 (2016). https://doi.org/10.1134/S1063783416060202

    Article  ADS  Google Scholar 

  14. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shockwave Phenomena in Condensed Media (Yanus-K, Moscow, 1996).

    Google Scholar 

  15. G. I. Kanel, J. Appl. Mech. Tech. Phys. 42, 358 (2001). https://doi.org/10.1023/A:1018804709273

    Article  ADS  Google Scholar 

  16. G. V. Garkushin, S. V. Razorenov, and G. I. Kanel, Tech. Phys. 53, 1441 (2008). https://doi.org/10.1134/S1063784208110078

    Article  Google Scholar 

  17. V. A. Ogorodnikov, E. Y. Borovkova, and S. V. Erunov, Combust., Explos. Shock Waves 40, 597 (2004). https://doi.org/10.1023/B:CESW.0000041413.64269.1c

    Article  Google Scholar 

  18. M. W. Guinan and D. J. Steinberg, J. Phys. Chem. Solids 35, 1501 (1974). https://doi.org/10.1016/S0022-3697(74)80278-7

    Article  ADS  Google Scholar 

  19. J. P. Cuq-Lelandias, M. Boustie, L. Soulard, L. Berthe, T. De. Resseguier, P. Combis, J. Bontaz-Carion, and E. Lescoute, RPJ Web Conf. 10, 00014 (2010). https://doi.org/10.1051/epjconf/20101000014

  20. G. Roy, Sc.D. Thesis (Univ. of Poitiers, Poitiers, 2003).

Download references

ACKNOWLEDGMENTS

The experiments were conducted in the Moscow regional explosive center for collective use of equipment at the Russian Academy of Sciences.

Funding

This study was performed as a part of state task no. 0089-2014-0016 in the framework of the program High-Energy-Density Condensed Matter and Plasma, Russian Academy of Sciences (research area Rapid Physicochemical Transformations and Fracture of Solids and Liquids).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Garkushin.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garkushin, G.V., Savinykh, A.S., Razorenov, S.V. et al. Influence of High-Temperature Annealing on the Resistance to High Strain Rate and Fracture of Tantalum at Temperatures of 20 and 500°C. Tech. Phys. 64, 674–679 (2019). https://doi.org/10.1134/S1063784219050074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219050074

Navigation