Advertisement

Technical Physics

, Volume 64, Issue 5, pp 620–624 | Cite as

Strength Performance of 1230 Aluminum Alloy under Tension in the Quasi-Static and Dynamic Ranges of Loading Parameters

  • A. D. EvstifeevEmail author
  • G. A. Volkov
  • A. A. Chevrychkina
  • Yu. V. Petrov
SOLID STATE
  • 27 Downloads

Abstract

Experimental and theoretical data for the strength performance of 1230 aluminum alloy under tension in the quasi-static and dynamic ranges of loading parameters are presented. Using the structural temporal approach and the sign-perturbed sums algorithm, the feasibility of raising the strain rate of a specimen by decreasing its geometrical size has been estimated.

Notes

ACKNOWLEDGMENTS

Experiments were performed using equipment of the Research park of St. Petersburg State University “The Study of Extreme States of Materials and Constructions.” and in the laboratory Mechanics of Advanced Bulk Nanomaterials for Innovative Engineering Applications.

FUNDING

This study was financially supported by the Russian Science Foundation (grant no. 17-79-10145).

REFERENCES

  1. 1.
    H. Kolsky, Proc. Phys. Soc., London, Sect. B 62, 676 (1949).Google Scholar
  2. 2.
    B. Hopkinson, Philos. Trans. R. Soc., A 213, 437 (1914).Google Scholar
  3. 3.
    T. Nicholas, Express Mech. 21, 177 (1981).CrossRefGoogle Scholar
  4. 4.
    G. H. Staab and A. Gilat, Exp. Mech. 31, 232 (1991).CrossRefGoogle Scholar
  5. 5.
    M. Bragov and A. K. Lomunov, Int. J. Impact Eng. 16, 321 (1995).CrossRefGoogle Scholar
  6. 6.
    U. S. Lindholm and L. M. Yeakley, Exp. Mech. 8, 1 (1968).CrossRefGoogle Scholar
  7. 7.
    E. Cadoni, C. Albertini, and G. Solomos, J. Phys. IV 134, 647 (2006).Google Scholar
  8. 8.
    E. Mancini, M. Sasso, M. Rossi, G. Chiappini, G. Newaz, and D. Amodio, J. Dyn. Behav. Mater. 1, 201 (2015).CrossRefGoogle Scholar
  9. 9.
    A. D. Evstifeev, A. A. Gruzdkov, and Yu. V. Petrov, Tech. Phys. 58, 989 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Petrov, I. Smirnov, A. Evstifeev, and N. Selyutina, Fract. Struct. Integr. 7 (24), 112 (2013).Google Scholar
  11. 11.
    A. Evstifeev, Y. Petrov, A. Bragov, and A. Konstantinov, Proc. Struct. Integr., No. 2, 446 (2016).Google Scholar
  12. 12.
    N. F. Morozov and Y. V. Petrov, Dynamics of Fracture (Springer, Berlin, 2000).CrossRefzbMATHGoogle Scholar
  13. 13.
    Y. Petrov and N. Morozov, J. Appl. Mech. 61, 710 (1994).CrossRefGoogle Scholar
  14. 14.
    L. Ljung, System Identification: Theory for the User (Prentice Hall, 1999).zbMATHGoogle Scholar
  15. 15.
    B. C. Csaji, M. C. Campi, and E. Weyer, IEEE Trans. Signal Process. 63, 169 (2015).MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. V. Volkova, O. N. Granichin, G. A. Volkov, and Yu. V. Petrov, Vestn. St. Petersburg Univ.: Math. 51, 23 (2018).MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. V. Volkova, O. N. Granichin, Yu. V. Petrov, and G. A. Volkov, Adv. Syst. Sci. Appl. 17, 34 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. D. Evstifeev
    • 1
    Email author
  • G. A. Volkov
    • 1
    • 2
  • A. A. Chevrychkina
    • 1
    • 2
  • Yu. V. Petrov
    • 1
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical Engineering, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations