Advertisement

Technical Physics

, Volume 64, Issue 5, pp 680–685 | Cite as

X-Ray Diagnostics of Microstructure Defects of Silicon Crystals Irradiated by Hydrogen Ions

  • V. E. AsadchikovEmail author
  • I. G. D’yachkova
  • D. A. Zolotov
  • Yu. S. Krivonosov
  • F. N. Chukhovskii
PHYSICAL SCIENCE OF MATERIALS

Abstract

Features of formation and transformation of radiation defects in near-surface layers of silicon plates that are implanted with hydrogen ions are studied. Using the method of high-resolution double-crystal X-ray diffractometry, values of the main parameters, such as mean effective thickness Leff and mean relative deformation Δa/a of a doped layer, are determined depending on the implantation dose and substrate temperature.

Notes

ACKNOWLEDGMENTS

We are grateful to N.V. Kuznetsov, Senior Researcher of Skobeltsyn Institute of Nuclear Physics, Moscow State University, for irradiation of samples on a KG-500 accelerator.

FUNDING

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment of the Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences.

REFERENCES

  1. 1.
    V. V. Kozlovskii, Modification of Semiconductors by Proton Beams (Nauka, St. Petersburg, 2003).Google Scholar
  2. 2.
    M. G. Mil’vidskii and V. B. Osvenskii, Structural Defects in Single Crystals of Semiconductors (Metallurgiya, Moscow, 1984).Google Scholar
  3. 3.
    I. G. D’yachkova, Candidate’s Dissertation in Mathematics and Physics (Moscow Inst. of Electronics and Mathematics, Moscow, 2004).Google Scholar
  4. 4.
    A. M. Afanas’ev, P. A. Aleksandrov, and R. M. Imamov, X-ray Diffraction Diagnostics of Submicron Layers (Nauka, Moscow, 1989).Google Scholar
  5. 5.
    V. S. Vavilov, V. F. Kiselev, and B. N. Mukashev, Bulk and Surface Defects in Silicon (Nauka, Moscow, 1990).Google Scholar
  6. 6.
    A. M. Afanas’ev, M. V. Kovalchuk, E. K. Kov’ev, and V. G. Kohn, Phys. Status Solidi A 42, 415 (1977).CrossRefGoogle Scholar
  7. 7.
    P. A. Aleksandrov, E. K. Baranova, I. V. Baranova, V. V. Budaragin, and V. L. Litvinov, Proc. XII Int. Conf. “Radiation Physics of the Solid State,” Sevastopol, Ukraine, 2002, Ed. by G. G. Bondarenko (Nauchno-Issled. Inst. Perpsekt. Mater. Tekhnol., Moscow, 2002), p. 149.Google Scholar
  8. 8.
    V. S. Vavilov and A. R. Chelyadinskii, Phys.-Usp. 38, 333 (1995).  https://doi.org/10.1070/PU1995v038n03ABEH000079 CrossRefGoogle Scholar
  9. 9.
    S. Zh. Tokmoldin and B. N. Mukashev, Physica B 308310, 167 (2001).Google Scholar
  10. 10.
    A. W. R. Leitch, V. Alex, and J. Weber, Phys. Rev. Lett. 81, 421 (1998).CrossRefGoogle Scholar
  11. 11.
    S. K. Estreicher, Mater. Sci. Eng. R 14, 319 (1995).CrossRefGoogle Scholar
  12. 12.
    G. D. Watkins, Mater. Sci. Semicond. Process. 3, 227 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. E. Asadchikov
    • 1
    Email author
  • I. G. D’yachkova
    • 1
  • D. A. Zolotov
    • 1
  • Yu. S. Krivonosov
    • 1
  • F. N. Chukhovskii
    • 1
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Center Crystallography and Photonics, Russian Academy of SciencesMoscowRussia

Personalised recommendations