Advertisement

Technical Physics

, Volume 64, Issue 5, pp 666–673 | Cite as

Formation of a ZnO–C Composite with a Nanocrystalline Structure

  • A. Kh. AbduevEmail author
  • A. K. Akhmedov
  • A. Sh. Asvarov
  • K. Sh. Rabadanov
  • R. M. Emirov
PHYSICAL SCIENCE OF MATERIALS
  • 24 Downloads

Abstract

The formation of a nanocrystalline composite of a ZnO–C system with simultaneous mechanical activation of a mixture of zinc oxide and graphite powders in a ball mill in an inert atmosphere is studied. It is shown that the presence of graphite reduces the efficiency of dispersing ZnO crystallites. The following principal dispersion mechanisms of graphite are determined: the fragmentation of particles due to the impact of grinding bodies and the exfoliation of flakes by submicron zinc oxide particles. It has been established that a composite system is formed as a result of the prolonged mechanical activation effect on the ZnO–graphite mixture, which is a nanocrystalline zinc oxide powder with uniformly distributed inclusions of micro- and nanocrystalline graphite, turbostratic carbon, exfoliated graphene structures, and amorphous carbon.

Notes

ACKNOWLEDGMENTS

This study was performed using equipment of the Analytical Center for Collective Use, Dagestan Scientific Center, Russian Academy of Sciences and the Center for Collective Use Analytical Spectroscopy, Dagestan State University.

REFERENCES

  1. 1.
    X. Qin, L. Cui, and G. Shao, J. Nanomater. 2013, 428419 (2013).  https://doi.org/10.1155/2013/428419
  2. 2.
    R. Saravanan, M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen, J. Colloid Interface Sci. 452, 126 (2015).  https://doi.org/10.1016/j.jcis.2015.04.035 CrossRefGoogle Scholar
  3. 3.
    A. Dumbrava, D. Berger, G. Prodan, and F. Moscalu, Chalcogenide Lett. 13, 105 (2016).Google Scholar
  4. 4.
    T. Dixit, M. Shukla, I. A. Palani, and V. Singh, Opt. Mater. 62, 673 (2016).  https://doi.org/10.1016/j.optmat.2016.10.053 CrossRefGoogle Scholar
  5. 5.
    Ch.-L. Hsu, Y.-J. Fang, T.-J. Hsueh, S.-H. Wang, and Sh.-J. Chang, J. Phys. Chem. B 121, 2931 (2017).  https://doi.org/10.1021/acs.jpcb.6b11257 CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, X. Gao, L. Zhi, X. Liu, W. Jiang, Y. Sun, and J. Yang, J. Inorg. Biochem. 130, 74 (2014).  https://doi.org/10.1016/j.jinorgbio.2013.10.004 CrossRefGoogle Scholar
  7. 7.
    X. Shen, D. Mu, Sh. Chen, B. Wu, and F. Wu, ACS Appl. Mater. Interfaces 5, 3118 (2013).  https://doi.org/10.1021/am400020n CrossRefGoogle Scholar
  8. 8.
    Ch. H. Kim and B.-H. Kim, J. Power Sources 274, 512 (2015).  https://doi.org/10.1016/j.jpowsour.2014.10.126 CrossRefGoogle Scholar
  9. 9.
    M. J. Sampaio, R. R. Bacsa, A. Benyounes, R. Axet, P. Serp, C. G. Silva, A. M. T. Silva, and J. L. Faria, J. Catal. 331, 172 (2015).  https://doi.org/10.1016/j.jcat.-2015.08.011 CrossRefGoogle Scholar
  10. 10.
    N. Masghouni, J. Burton, M. K. Philen, and M. Al-Haik, Nanotechnology 26, 095401 (2015).  https://doi.org/10.1088/0957-4484/26/9/095401 CrossRefGoogle Scholar
  11. 11.
    M. M. Hossain, H. Shima, M. A. Islam, M. Hasan, and M. Lee, J. Phys. Chem. C 120, 17670 (2016).  https://doi.org/10.1021/acs.jpcc.6b03484 CrossRefGoogle Scholar
  12. 12.
    R.-J. Chung, A.-N. Wang, Q.-L. Liao, and K.-Y. Chuang, Nanomaterials 7, 36 (2017).  https://doi.org/10.3390/nano7020036 CrossRefGoogle Scholar
  13. 13.
    A. Kh. Abduev, A. K. Akhmedov, and A. Sh. Asvarov, Tech. Phys. Lett. 40, 618 (2014).  https://doi.org/10.1134/S1063785014070153 CrossRefGoogle Scholar
  14. 14.
    Sh. Yang, F. Chen, Q. Shen, E. J. Lavernia, and L. Zhang, Materials 9, 638 (2016).  https://doi.org/10.3390/ma9080638 CrossRefGoogle Scholar
  15. 15.
    A. Sh. Asvarov, A. K. Akhmedov, A. Kh. Abduev, A. E. Muslimov, and A. Chiolerio, Crystallogr. Rep. 62, 144 (2017).  https://doi.org/10.1134/S1063774517010059 CrossRefGoogle Scholar
  16. 16.
    T. Xing, S. Mateti, L. H. Li, F. Ma, A. Du, Y. Gogotsi, and Y. Chen, Sci. Rep. 6, 35532 (2016).  https://doi.org/10.1038/srep35532 CrossRefGoogle Scholar
  17. 17.
    C. N. Barnakov, G. P. Khokhlova, V. Y. Malysheva, A. N. Popova, and Z. R. Ismagilov, Solid Fuel Chem. 49, 25 (2015).  https://doi.org/10.3103/S0361521915010036 CrossRefGoogle Scholar
  18. 18.
    S. Reich and C. Thomsen, Philos. Trans. R. Soc. London A 362, 2271 (2004).  https://doi.org/10.1098/rsta.2004.1454 CrossRefGoogle Scholar
  19. 19.
    L. G. Cancado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, Phys. Rev. Lett 93, 247401 (2004).  https://doi.org/10.1103/PhysRevLett.93.247401 CrossRefGoogle Scholar
  20. 20.
    K. S. W. Sing and S. J. Gregg, Adsorption, Surface Area, and Porosity (Academic, New York, 1982).Google Scholar
  21. 21.
    P. K. Giri, S. Bhattacharyya, D. K. Singh, R. Kesavamoorthy, B. K. Panigrahi, and K. G. M. Nair, J. Appl. Phys. 102, 093515 (2007).  https://doi.org/10.1063/1.2804012 CrossRefGoogle Scholar
  22. 22.
    M. G. Kakazey, V. A. Melnikova, T. Sreckovic, T. V. Tomila, and M. M. Ristic, J. Mater. Sci. 34, 1691 (1999).CrossRefGoogle Scholar
  23. 23.
    N. Salah, S. S. Habib, Z. H. Khan, A. Memic, A. Azam, E. Alarfaj, N. Zahed, and S. Al-hamedi, Int. J. Nanomed. 6, 863 (2011).CrossRefGoogle Scholar
  24. 24.
    K. P. Shinde, R. C. Pawar, B. B. Sinha, H. S. Kim, S. S. Oh, and K. C. Chung, J. Alloys Compd. 617, 404 (2014).CrossRefGoogle Scholar
  25. 25.
    T. Torchynska, B. P. Millan, G. Polupan, and M. Ka-kazey, AIMS Mater. Sci. 3, 204 (2016).  https://doi.org/10.3934/matersci.2016.1.204 Google Scholar
  26. 26.
    T. Sreckovic, S. Bernik, M. Cen, and K. Vojisavljevic, J. Microsc. 232, 639 (2008).  https://doi.org/10.1111/j.1365-2818.2008.02131.x MathSciNetCrossRefGoogle Scholar
  27. 27.
    V. E. Kaidashev, N. V. Lyanguzov, Yu. I. Yuzyuk, and E. M. Kaidashev, Tech. Phys. 57, 1406 (2012).  https://doi.org/10.1134/S1063784212100088 CrossRefGoogle Scholar
  28. 28.
    M. Scepanovic, T. Srećkovic, K. Vojisavljevic, and M. M. Ristic, Sci. Sintering 38, 169 (2006).  https://doi.org/10.2298/SOS0602169S CrossRefGoogle Scholar
  29. 29.
    O. V. Gorbunova, A. V. Vasilevich, O. N. Baklanova, A. B. Arbuzov, Y. S. Poserkova, and V. A. Likholobov, Proc. Eng. 113, 484 (2015).  https://doi.org/10.1016/j.proeng.2015.07.340 CrossRefGoogle Scholar
  30. 30.
    A. C. Ferrari, Solid State Commun. 143, 47 (2007).  https://doi.org/10.1016/j.ssc.2007.03.052 CrossRefGoogle Scholar
  31. 31.
    F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 (1970).  https://doi.org/10.1063/1.1674108 CrossRefGoogle Scholar
  32. 32.
    T. D. Shen, W. Q. Ge, K. Y. Wang, M. X. Quan, J. T. Wang, W. D. Wei, and C. C. Koch, Nanostruct. Mater. 7, 393 (1996).  https://doi.org/10.1016/0965-9773(96)00010-4 CrossRefGoogle Scholar
  33. 33.
    P. B. Sorokin and L. A. Chernozatonskii, Phys.-Usp. 56, 105 (2013).CrossRefGoogle Scholar
  34. 34.
    T. He, J. Li, L. Wang, J. Zhu, and W. Jiang, Mater. Trans. 50, 749 (2009).CrossRefGoogle Scholar
  35. 35.
    Zh.-M. Gao, H.-Zh. Jin, X.-Sh. Li, and Zh. Hua, Chem. Res. Chin. Univ. 19, 216 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. Kh. Abduev
    • 1
    Email author
  • A. K. Akhmedov
    • 1
  • A. Sh. Asvarov
    • 1
    • 2
  • K. Sh. Rabadanov
    • 2
  • R. M. Emirov
    • 3
  1. 1.Amirkhanov Institute of Physics, Dagestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia
  2. 2.Analytical Center for Collective Use, Dagestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia
  3. 3.Dagestan State UniversityMakhachkalaRussia

Personalised recommendations