Technical Physics

, Volume 63, Issue 3, pp 460–466 | Cite as

New Method for Determining the Thermoemission Nonuniformity Parameters of Cathode Materials for Microwave Devices

Physical Electronics
  • 3 Downloads

Abstract

A new method developed here for studying the thermoemission nonuniformity parameters of cathode materials makes it possible to determine the temperature dependences of the average size of the thermoemission centers on the cathode surface, the average distance between thermoemission centers, the relative area of the emission-active surface of the cathodes, and the true value of the work function for emissionactive centers on the cathode surface by processing the current–voltage characteristics. The method is tested on nickel oxide, agglomerated nickel oxide, and impregnated cathodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Ch. Dyubua, O. K. Kultashev, and O. V. Polivnikova, Elektron. Tekh., Ser. 1: SVCh-Tekh., No. 4, 3 (2008).Google Scholar
  2. 2.
    B. Ch. Dyubua and A. N. Korolev, Elektron. Tekh., Ser. 1: SVCh-Tekh., No. 1, 5 (2011).Google Scholar
  3. 3.
    N. E. Ledentsova, I. P. Li, V. S. Petrov, and V. I. Kapustin, Tonkie Khim. Tekhnol. 11 (3), 74 (2016).Google Scholar
  4. 4.
    L. Schoenbeck, Master of Science Thesis (Georgia Inst. of Technology, Atlanta, 2005).Google Scholar
  5. 5.
    G. Gartner, P. Geintter, and A. Ritz, Appl. Surf. Sci. 111, 11 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    A. Shih, J. Yater, C. Hor, and R. Abrams, Appl. Surf. Sci. 111, 251 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    F. Yang, J. Wang, W. Liu, X. Liu, and M. Zhou, Appl. Surf. Sci. 270, 746 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    V. I. Kapustin, I. P. Li, V. S. Petrov, N. E. Ledentsova, and A. V. Turbina, Elektron. Tekh., Ser. 1: SVCh-Tekh., No. 1, 8 (2016).Google Scholar
  9. 9.
    V. I. Kapustin, I. P. Li, A. V. Shumanov, Yu. Yu. Lebedinskii, and A. V. Zablotskii, Tech. Phys. 62, 116 (2017).CrossRefGoogle Scholar
  10. 10.
    V. I. Kapustin, Perspekt. Mater., No. 2, 5 (2000).Google Scholar
  11. 11.
    I. Brodie and B. Vancil, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2014, p. 53.Google Scholar
  12. 12.
    J. M. Vaughn, PhD Thesis (College of Arts and Sciences of Ohio Univ., Athens, 2010).Google Scholar
  13. 13.
    Y. Wang, J. Wang, W. Liu, W. Liang, and F. Yang, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2014, p. 51.Google Scholar
  14. 14.
    V. V. Marin, V. I. Kapustin, and O. V. Nikitin, Naukoemkie Tekhnol., No. 2, 50 (2003).Google Scholar
  15. 15.
    L. N. Dobretsov and M. V. Gomoyunova, Emission Electronics (Nauka, Moscow, 1966).Google Scholar
  16. 16.
    B. M. Tsarev, Calculation and Design of Vacuum Tubes (Energoizdat, Moscow, 1952).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow Technical University (MIREA)MoscowRussia
  2. 2.AO PlutonMoscowRussia

Personalised recommendations