Advertisement

Technical Physics

, Volume 63, Issue 3, pp 357–362 | Cite as

The Influence of the Cobalt Content on the Strength Properties of Tungsten Carbide Ceramics under Dynamic Loads

  • A. S. Savinykh
  • K. Mandel
  • S. V. Razorenov
  • L. Krüger
Solid State
  • 27 Downloads

Abstract

Based on the registration and analysis of the full wave profiles, the Hugoniot elastic limit and spall strength of ceramics based on tungsten carbide with different cobalt content are measured. We also study the influence of the cobalt content on the mechanical characteristics of tungsten carbide such as hardness, fracture strength, Young’s modulus, shear modulus, and sound velocity. It is shown that in the process of spalling, the failure stresses grow and the dynamic elastic limit decreases almost linearly within the scatter of their values with growing cobalt content; moreover, the value of the Hugoniot elastic limit is abruptly practically halved as the cobalt content grows from 0 to 2 wt %.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Buzyurkin, E. I. Kraus, and Ya. L. Lukyanov, J. Phys.: Conf. Ser. 653, 012036 (2015).Google Scholar
  2. 2.
    R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, in High Velocity Impact Phenomena, Ed. by R. Kinslow (Academic, New York, 1970), pp. 293–417, 515–568.Google Scholar
  3. 3.
    M. N. Pavlovskii, Fiz. Tverd. Tela 12, 2175 (1970).Google Scholar
  4. 4.
    D. Grady, Int. J. Impact Eng. 23, 307 (1999).CrossRefGoogle Scholar
  5. 5.
    G. J. Appleby-Thomas, P. J. Hazell, C. Stennett, G. Cooper, K. Helaar, and A. M. Diederen, J. Appl. Phys. 105, 064916 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    D. P. Dandekar and D. E. Grady, AIP Conf. Proc. 620, 783 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    G. M. Amulele, M. H. Manghnani, S. Marriappan, X. Hong, F. Li, X. Qin, and H. P. Liermann, J. Appl. Phys. 103, 113522 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    I. Girlitsky, E. Zaretsky, S. Kalabukhov, M. P. Dariel, and N. Frage, J. Appl. Phys. 115, 243505 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann, Adv. Eng. Mater. 16, 830 (2014).CrossRefGoogle Scholar
  10. 10.
    K. Mandel, L. Krüger, and C. Schimpf, Int. J. Refract. Met. Hard Mater. 42, 200 (2014).CrossRefGoogle Scholar
  11. 11.
    K. Mandel, L. Krüger, and C. Schimpf, Int. J. Refract. Met. Hard Mater. 45, 153 (2014).CrossRefGoogle Scholar
  12. 12.
    ISO DIN 3878. Hardmetals. Vickers Hardness Test (1991).Google Scholar
  13. 13.
    S. I. Bulychev and V. P. Alekhin, Material Testing by Continuous Indentation (Mashinostroenie, Moscow, 1990).Google Scholar
  14. 14.
    W. D. Schubert, H. Neumeister, G. Kinger, and B. Lux, Int. J. Refract. Met. Hard Mater. 16, 133 (1998).CrossRefGoogle Scholar
  15. 15.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamical Phenomena (Nauka, Moscow, 1966).Google Scholar
  16. 16.
    G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and Properties of Condensed Matter (Springer, New York, 2004).CrossRefGoogle Scholar
  17. 17.
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996).Google Scholar
  18. 18.
    L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    G. I. Kanel, Int. J. Fract. 163, 173 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Savinykh
    • 1
    • 2
  • K. Mandel
    • 3
  • S. V. Razorenov
    • 1
    • 2
  • L. Krüger
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Freiberg University of Mining and TechnologyFreibergGermany

Personalised recommendations