The Influence of the Cobalt Content on the Strength Properties of Tungsten Carbide Ceramics under Dynamic Loads
Abstract
Based on the registration and analysis of the full wave profiles, the Hugoniot elastic limit and spall strength of ceramics based on tungsten carbide with different cobalt content are measured. We also study the influence of the cobalt content on the mechanical characteristics of tungsten carbide such as hardness, fracture strength, Young’s modulus, shear modulus, and sound velocity. It is shown that in the process of spalling, the failure stresses grow and the dynamic elastic limit decreases almost linearly within the scatter of their values with growing cobalt content; moreover, the value of the Hugoniot elastic limit is abruptly practically halved as the cobalt content grows from 0 to 2 wt %.
Preview
Unable to display preview. Download preview PDF.
References
- 1.A. E. Buzyurkin, E. I. Kraus, and Ya. L. Lukyanov, J. Phys.: Conf. Ser. 653, 012036 (2015).Google Scholar
- 2.R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, in High Velocity Impact Phenomena, Ed. by R. Kinslow (Academic, New York, 1970), pp. 293–417, 515–568.Google Scholar
- 3.M. N. Pavlovskii, Fiz. Tverd. Tela 12, 2175 (1970).Google Scholar
- 4.D. Grady, Int. J. Impact Eng. 23, 307 (1999).CrossRefGoogle Scholar
- 5.G. J. Appleby-Thomas, P. J. Hazell, C. Stennett, G. Cooper, K. Helaar, and A. M. Diederen, J. Appl. Phys. 105, 064916 (2009).ADSCrossRefGoogle Scholar
- 6.D. P. Dandekar and D. E. Grady, AIP Conf. Proc. 620, 783 (2002).ADSCrossRefGoogle Scholar
- 7.G. M. Amulele, M. H. Manghnani, S. Marriappan, X. Hong, F. Li, X. Qin, and H. P. Liermann, J. Appl. Phys. 103, 113522 (2008).ADSCrossRefGoogle Scholar
- 8.I. Girlitsky, E. Zaretsky, S. Kalabukhov, M. P. Dariel, and N. Frage, J. Appl. Phys. 115, 243505 (2014).ADSCrossRefGoogle Scholar
- 9.O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann, Adv. Eng. Mater. 16, 830 (2014).CrossRefGoogle Scholar
- 10.K. Mandel, L. Krüger, and C. Schimpf, Int. J. Refract. Met. Hard Mater. 42, 200 (2014).CrossRefGoogle Scholar
- 11.K. Mandel, L. Krüger, and C. Schimpf, Int. J. Refract. Met. Hard Mater. 45, 153 (2014).CrossRefGoogle Scholar
- 12.ISO DIN 3878. Hardmetals. Vickers Hardness Test (1991).Google Scholar
- 13.S. I. Bulychev and V. P. Alekhin, Material Testing by Continuous Indentation (Mashinostroenie, Moscow, 1990).Google Scholar
- 14.W. D. Schubert, H. Neumeister, G. Kinger, and B. Lux, Int. J. Refract. Met. Hard Mater. 16, 133 (1998).CrossRefGoogle Scholar
- 15.Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamical Phenomena (Nauka, Moscow, 1966).Google Scholar
- 16.G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and Properties of Condensed Matter (Springer, New York, 2004).CrossRefGoogle Scholar
- 17.G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996).Google Scholar
- 18.L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).ADSCrossRefGoogle Scholar
- 19.G. I. Kanel, Int. J. Fract. 163, 173 (2010).CrossRefGoogle Scholar