Advertisement

Technical Physics

, Volume 63, Issue 3, pp 422–426 | Cite as

Excitation of Surface Waves in Plane-Layered Structures and Development of Optical Modulators

  • A. B. Petrin
  • O. D. Vol’pyan
  • A. S. Sigov
Optics

Abstract

An original theoretical method for the study of reflection of a plane electromagnetic wave from a plane-layered structure consisting of anisotropic films is used to develop optical modulators and tunable sensors. Relatively low switching voltages of modulators allow applications of such units in modern ICs and make it possible to construct high-rate optical channels for data transmission that connect fragments of a single IC or remote devices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).CrossRefGoogle Scholar
  2. 2.
    W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    J. Homola, Chem. Rev. 108, 462 (2008).CrossRefGoogle Scholar
  4. 4.
    G. Spoto and M. Minunni, J. Phys. Chem. Lett. 3, 2682 (2012).CrossRefGoogle Scholar
  5. 5.
    H. Raether, Surface Plasmons (Springer, Berlin, 1988).Google Scholar
  6. 6.
    W. L. Barnes, J. Opt. A: Pure Appl. Opt. 8, S87 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    E. Kretschmann and H. Z. Raether, Z. Naturforsch., A: Phys. Sci. 23, 2135 (1968).Google Scholar
  8. 8.
    M. Piliarik and J. Homola, Opt. Express 17, 16505 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    B. Liedberg, C. Nylander, and I. Lundstrom, Sens. Actuators 4, 299 (1983).CrossRefGoogle Scholar
  10. 10.
    B. Liedberg, C. Nylander, and I. Lundstrom, Biosens. Bioelectron. 10 (8), i (1995).CrossRefGoogle Scholar
  11. 11.
    R. Garabedian, C. Gonzalez, J. Richards, et al., Sens. Actuators A 43, 202 (1994).CrossRefGoogle Scholar
  12. 12.
    E. M. Yeatman, Biosens. Bioelectron. 11, 635 (1996).CrossRefGoogle Scholar
  13. 13.
    D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).ADSCrossRefGoogle Scholar
  14. 14.
    K. Matsubara, S. Kawata, and S. Minami, Opt. Lett. 15, 75 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    F. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    M. A. Kessler and E. A. H. Hall, Thin Solid Films 272, 161 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001).CrossRefGoogle Scholar
  18. 18.
    S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, Sens. Actuators B 65, 32 (2000).CrossRefGoogle Scholar
  19. 19.
    A. Airoudj, D. Debarnot, B. Beche, and F. Poncin-Epaillard, Anal. Chem. 80, 9188 (2008).CrossRefGoogle Scholar
  20. 20.
    S. E. Irvine, A. Dechant, and A. Y. Elezzabi, Phys. Rev. Lett. 93, 184801 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    S. E. Irvine and A. Y. Elezzabi, Phys. Rev. A 73, 013815 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. B. Petrin
    • 1
    • 2
  • O. D. Vol’pyan
    • 2
  • A. S. Sigov
    • 3
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Scientific Industrial Enterprise Fotron-AvtoMoscowRussia
  3. 3.Moscow Technological University MIREAMoscowRussia

Personalised recommendations