Advertisement

Technical Physics

, Volume 63, Issue 3, pp 416–421 | Cite as

Phototransferred Thermoluminescence of Dosimetric α-Al2O3 Crystals Irradiated by a Pulsed Electron Beam

  • S. V. Nikiforov
  • V. S. Kortov
  • E. V. Moiseykin
  • M. G. Kazantseva
Optics
  • 19 Downloads

Abstract

The thermoluminescence (TL) of deep traps of anion-defective alumina monocrystals irradiated by a high-dose (more than 1 kGy) pulsed electron beam (130 keV) is studied. The deep traps in the studied material are classified according to the TL temperature range. It is demonstrated that the phototransferred thermoluminescence (PTTL) in the temperature range of the main TL peak is induced by optical charge migration from deep traps that are emptied at 400–470 and 470–600°C. An anomalous PTTL enhancement in crystals subjected to stepped annealing in the 350–400°C interval is observed. It is demonstrated that this effect may be caused by competing processes of charge transfer that involve deep traps corresponding to the TL peak at 390°C. The applicability of PTTL in the dosimetry of high-dose (1–50 kGy) pulsed electron beams is established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Aksel’rod, V. S. Kortov, I. I. Mil’man, E. A. Gorelova, A. A. Borisov, L. M. Zatulovskii, D. Ya. Kravetskii, I. E. Berezina, and N. K. Lebedev, Izv. Akad. Nauk SSSR, Ser. Fiz. 52, 1981 (1988).Google Scholar
  2. 2.
    V. S. Kortov, A. I. Syurdo, and F. F. Sharafutdinov, Tech. Phys. 42, 783 (1997).CrossRefGoogle Scholar
  3. 3.
    A. V. Krasheninnikov and F. Banhart, Nat. Mater. 6, 723 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    R. F. Morrissey and C. M. Herring, Radiat. Phys. Chem. 63, 217 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    J. H. Bly, Electron Beam Processing (International Information Associates, Yardley, 1988), pp. 32–53.Google Scholar
  6. 6.
    A. N. Dovbnya, V. V. Zakutin, N. G. Reshetnyak, V. P. Romas’ko, Yu. Ya. Volkolupov, and M. A. Krasnogolovets, Tech. Phys. 47, 1580 (2002).CrossRefGoogle Scholar
  7. 7.
    M. S. Akselrod, V. S. Kortov, D. J. Kravetsky, and V. I. Gotlib, Radiat. Prot. Dosim. 32, 15 (1990).Google Scholar
  8. 8.
    I. I. Mil’man, V. S. Kortov, and S. V. Nikiforov, Phys. Solid State 40, 206 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    I. I. Mil’man, E. V. Moiseikin, S. V. Nikiforov, S. V. Solov’ev, I. G. Revkov, and E. N. Litovchenko, Phys. Solid State 50, 2076 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    A. I. Surdo, R. M. Abashev, I. I. Milman, and E. V. Moiseykin, Radiat. Meas. 90, 192 (2016).CrossRefGoogle Scholar
  11. 11.
    S. V. Nikiforov, V. S. Kortov, S. V. Zvonarev, and E. V. Moiseykin, Tech. Phys. 59, 245 (2014).CrossRefGoogle Scholar
  12. 12.
    S. V. Nikiforov, V. S. Kortov, S. V. Zvonarev, E. V. Moiseykin, and M. G. Kazantseva, Radiat. Meas. 71, 74 (2014).CrossRefGoogle Scholar
  13. 13.
    S. V. Nikiforov and V. S. Kortov, Radiat. Prot. Dosim. 162, 92 (2014).CrossRefGoogle Scholar
  14. 14.
    M. S. Akselrod and E. A. Gorelova, Nucl. Tracks Radiat. Meas. 21, 143 (1993).CrossRefGoogle Scholar
  15. 15.
    E. G. Yukihara, V. H. Whitley, J. C. Polf, D. M. Klein, S. W. S. McKeever, A. E. Akselrod, and M. S. Akselrod, Radiat. Meas. 37, 627 (2003).CrossRefGoogle Scholar
  16. 16.
    A. I. Surdo, I. I. Milman, R. M. Abashev, and M. I. Vlasov, Tech. Phys. Lett. 40, 1048 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    M. S. Akselrod, N. Agersnap Larsen, V. Whitley, and S. W. S. McKeever, J. Appl. Phys. 84, 3364 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    I. I. Mil’man, V. S. Kortov, and V. I. Kirpa, Fiz. Tverd. Tela 37, 1149 (1995).Google Scholar
  19. 19.
    S. V. Nikiforov, V. S. Kortov, B. A. Makkambaev, and T. A. Aminov, Tech. Phys. Lett. 42, 443 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    L. Oster, D. Weiss, and N. Kristianpoller, J. Phys. D: Appl. Phys. 27, 1732 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    L. E. Colyott, M. S. Akselrod, and S. W. S. McKeever, Radiat. Prot. Dosim. 65, 263 (1996).CrossRefGoogle Scholar
  22. 22.
    E. Bulur and H. Y. Goksu, Radiat. Meas. 30, 203 (1999).CrossRefGoogle Scholar
  23. 23.
    F. D. Walker, L. E. Colyott, N. Agersnap Larsen, and S. W. S. McKeever, Radiat. Meas 26, 711 (1996).CrossRefGoogle Scholar
  24. 24.
    V. S. Kortov, I. I. Milman, S. V. Nikiforov, E. V. Moiseikin, and M. M. Ovchinnikov, Phys. Solid State 46, 2217 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    V. B. Bychkov, V. D. Lartsev, V. P. Pudov, V. I. Solomonov, S. A. Shunailov, V. V. Generalova, and A. A. Gromov, Instrum. Exp. Tech. 48, 641 (2005).CrossRefGoogle Scholar
  26. 26.
    M. I. Vlasov, A. I. Surdo, I. I. Milman, and R. M. Abashev, Radiat. Meas. 90, 71 (2016).CrossRefGoogle Scholar
  27. 27.
    A. E. Akselrod and M. S. Akselrod, Radiat. Prot. Dosim. 100, 217 (2002).CrossRefGoogle Scholar
  28. 28.
    V. H. Whitley and S. W. S. McKeever, Radiat. Prot. Dosim. 100, 61 (2002).CrossRefGoogle Scholar
  29. 29.
    S. V. Nikiforov, V. S. Kortov, A. A. Nosal, and E. V. Moiseikin, Phys. Solid State 53, 2141 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    G. S. Polymeris and G. Kitis, Appl. Radiat. Isot. 70, 2478 (2012).CrossRefGoogle Scholar
  31. 31.
    R. Chen and S. W. S. McKeever, Radiat. Meas. 23, 667 (1994).CrossRefGoogle Scholar
  32. 32.
    J. L. Lawless, R. Chen, and V. Pagonis, Radiat. Meas. 44, 606 (2009).CrossRefGoogle Scholar
  33. 33.
    R. Chen, V. Pagonis, and J. L. Lawless, Radiat. Meas. 45, 277 (2010).CrossRefGoogle Scholar
  34. 34.
    S. V. Nikiforov and V. S. Kortov, Phys. Solid State 56, 2064 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Nikiforov
    • 1
  • V. S. Kortov
    • 1
  • E. V. Moiseykin
    • 1
  • M. G. Kazantseva
    • 1
  1. 1.Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations