Technical Physics

, Volume 63, Issue 3, pp 374–380 | Cite as

Nonlinear Elastic Waves in a Solid Isotropic Wedge with Defects

  • A. I. Korobov
  • A. A. Agafonov
  • M. Yu. Izosimova
Solid State


The paper presents experimental data for linear and nonlinear elastic waves in an acute-angled wedge made of D16 isotropic polycrystalline alloy with defects. The localization of waves at the edge of the wedge has been studied using laser vibrometry. The velocities of wedge waves have been measured by a pulse method in the frequency range 0.25–1.50 MHz. Measurements have not revealed any dispersion. The second harmonic of the wedge waves has been found. The dependences of the velocity and amplitude of the second harmonic on the amplitude of the first harmonic have been studied. It is noted that nonlinear effects observed in wedge waves may be explained in terms of the Murnaghan classical five-constant theory of elasticity. They are attributed to a defect-induced structural nonlinearity present in the wedge.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. E. Lagasse, I. M. Mason, and E. A. Ash, IEEE Trans. Sonics Ultrason. 21, 225 (1973).Google Scholar
  2. 2.
    A. A. Maradudin, R. F. Wallis, D. L. Mills, and R. L. Ballard, Phys. Rev. B 6, 1106 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    S. L. Moss, A. A. Maradudin, and S. L. Cunningham, Phys. Rev. B 8, 2999 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    T. M. Sharon, A. A. Maradudin, and S. L. Cunningham, Phys. Rev. B 8, 6024 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    J. McKenna, G. D. Boyd, and R. N. Thurston, IEEE Trans. Sonics Ultrason. 21, 178 (1974).CrossRefGoogle Scholar
  6. 6.
    V. V. Krylov and D. F. Parker, Wave Motion 15, 185 (1992).MathSciNetCrossRefGoogle Scholar
  7. 7.
    O. V. Rudenko, Phys.-Usp. 49, 69 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    O. V. Rudenko, Defektoskopiya, No. 8, 24 (1993).Google Scholar
  9. 9.
    L. K. Zarembo and A. V. Shanin, Akust. Zh. 41, 587 (1995).Google Scholar
  10. 10.
    A. I. Korobov and M. Yu. Izosimova, Acoust. Phys. 52, 589 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    Universality of Nonclassical Nonlinearity, Ed. by P. Delsanto (Springer, New York, 2006).Google Scholar
  12. 12.
    A. I. Korobov, N. I. Odina, and D. M. Mekhedov, Acoust. Phys. 59, 387 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    A. I. Korobov, M. Yu. Izossimova, and N. V. Shirgina, Phys. Procedia 70, 415 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    A. I. Korobov, M. Yu. Izosimova, and N. I. Odina, Acoust. Phys. 61, 293 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    R. A. Guyer and P. A. Johnson, Nonlinear Mesoscopic Elasticity: the Complex Behaviour of Rocks, Soil, Concrete (Wiley, 2009).CrossRefGoogle Scholar
  16. 16.
    P. Hess, A. M. Lomonosov, and A. P. Mayer, Ultrasonics 71, 278 (2016).CrossRefGoogle Scholar
  17. 17.
    Kh. B. Tolipov, Tech. Phys. 57, 1321 (2012).CrossRefGoogle Scholar
  18. 18.
    L. K. Zarembo and V. A. Krasil’nikov, Sov. Phys. Usp. 13, 778 (1971)ADSCrossRefGoogle Scholar
  19. 19.
    V. E. Nazarov and A. M. Sutin, Akust. Zh. 35, 711 (1989).Google Scholar
  20. 20.
    L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics (Nauka, Moscow, 1966).Google Scholar
  21. 21.
    Structural Materials. Handbook, Ed. by B. N. Arzamasov (Mashinostroenie, Moscow, 1990).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Korobov
    • 1
  • A. A. Agafonov
    • 1
  • M. Yu. Izosimova
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations