Advertisement

Technical Physics

, Volume 63, Issue 3, pp 385–390 | Cite as

Effect of Processing by Femtosecond Pulsed Laser on Mechanical Properties of Submicrocrystalline Titanium

  • Yu. R. Kolobov
  • E. A. Korneeva
  • I. N. Kuz’menko
  • A. N. Skomorokhov
  • S. I. Kudryashov
  • A. A. Ionin
  • S. V. Makarov
  • A. Yu. Kolobova
  • S. S. Manokhin
  • V. I. Betekhtin
  • A. G. Kadomtsev
Physical Science of Materials
  • 21 Downloads

Abstract

Effect of femtosecond laser processing on mechanical properties of plates made of submicrocrystalline VT1-0 titanium alloy is studied using active deformation and fatigue testing involving cantilever bending.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. R. Kolobov, Nanotechnol. Russ. 4, 758 (2009).CrossRefGoogle Scholar
  2. 2.
    R. Le Harzic et al., Appl. Phys. Lett. 80, 3886 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. R. Kolobov, A. G. Lipnitskii, M. B. Ivanov, I. V. Nelasov, and S. S. Manokhin, Russ. Phys. J. 54, 918 (2012).CrossRefGoogle Scholar
  4. 4.
    Yu. R. Kolobov, M. B. Ivanov, S. S. Manokhin, and E. Erubaev, Inorg. Mater. 52, 128 (2016).CrossRefGoogle Scholar
  5. 5.
    E. Fadeeva et al., Langmuir 27, 3012 (2011).CrossRefGoogle Scholar
  6. 6.
    R. J. Crawford et al., Adv. Colloid Interface Sci. 179, 142 (2012).CrossRefGoogle Scholar
  7. 7.
    E. Luong-Van, I. Rodrigue, et al., J. Mater. Res. 28, 165 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. R. Kolobov, M. B. Ivanov, E. V. Golosov, and A. V. Penkin, RF Patent No. 2389568 (2010).Google Scholar
  9. 9.
    S. A. Saltykov, Stereometric Metallography (Metallurgiya, Moscow, 1986).Google Scholar
  10. 10.
    M. N. Stepnov, Statistical Methods for Processing the Results of Mechanical Tests (Mashinostroenie, Moscow, 1985).Google Scholar
  11. 11.
    A. Ionin et al., Laser Phys. Lett. 10, 045605 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    N. E. Fomin, V. A. Yudin, and A. A. Kireev, Innovatsionnoe Obraz., No. 4, 129 (2013).Google Scholar
  13. 13.
    Internal Friction Method in Metallography, Ed. by M. S. Blanter and Yu. V. Piguzov (Metallurgiya, Moscow, 1991).Google Scholar
  14. 14.
    Y. M. Wang, P. F. Zhang, L. X. Guo, J. H. Ouyang, Y. Zhou, and D. C. Jia, Appl. Surf. Sci. 255, 8616 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    J. M. Wheeler, C. A. Collier, J. M. Paillard, and J. A. Curran, Surf. Coat. Technol. 204, 3399 (2010).CrossRefGoogle Scholar
  16. 16.
    E. A. Korneeva, A. N. Skomorokhov, Yu. R. Kolobov, I. N. Kuz’menko, G. V. Khramov, and V. V. Rakityanskii, Kompoz. Nanostrukt. 4, 32 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. R. Kolobov
    • 1
    • 2
  • E. A. Korneeva
    • 3
  • I. N. Kuz’menko
    • 1
  • A. N. Skomorokhov
    • 4
  • S. I. Kudryashov
    • 5
    • 6
  • A. A. Ionin
    • 5
  • S. V. Makarov
    • 5
    • 6
  • A. Yu. Kolobova
    • 2
    • 7
  • S. S. Manokhin
    • 1
    • 2
  • V. I. Betekhtin
    • 8
  • A. G. Kadomtsev
    • 8
  1. 1.Belgorod State National Research UniversityBelgorodRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  4. 4.Institute of Physics and Power EngineeringState Research Center of Russian FederationObninskRussia
  5. 5.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  6. 6.National Research Nuclear University MEPhIMoscowRussia
  7. 7.National Research Technological University MISiSMoscowRussia
  8. 8.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations