Features of the Development of Electron-Optical Systems for Pulsed Terahertz Traveling-Wave Tubes (Review)
Physical Electronics
First Online:
Received:
Accepted:
- 8 Downloads
Abstract
We present an analysis of the current state and development of pulsed amplifying traveling-wave tubes for terahertz radiation operation at frequencies of at least 200 GHz, as well as the development prospects of the principles of creating electron-optical and magnetic systems. The possibility of using field emission cathodes based on carbon nanotubes for constructing an electron-optical system with the compression of a sheet beam is discussed. A numerical simulation of a field emission electron gun forming a sheet electron beam for traveling-wave tubes of the terahertz range is carried out.
Preview
Unable to display preview. Download preview PDF.
References
- 1.J. C. Tucek, M. A. Basten, D. A. Gallgher, and K. E. Kreischer, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 19.Google Scholar
- 2.K. E. Kreischer et al., in Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, United States, 2008. https://doi.org/10.1109/ICIMW.2008.4665704Google Scholar
- 3.J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2014, p. 153.Google Scholar
- 4.C. D. Joye, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2014, p. 219.Google Scholar
- 5.K. Nguyen, E. Wright, D. Pershing, and L. Ludeking, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 23.Google Scholar
- 6.C. M. Armstrong et al., in Proc. IEEE Int. Vacuum Electronics Conf., London, England, 2017.Google Scholar
- 7.Y.-M. Shin, A. Baig, D. Gamzina, and N. C. Luhmann, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 185.Google Scholar
- 8.T. A. Karetnikova, N. M. Ryskin, A. G. Rozhnev, G. V. Torgashov, P. D. Shalaev, and A. A. Burtsev, in Proc. 42nd IEEE Int. Conf. on Plasma Sciences, Antalya, Turkey, 2015. doi 10.1109/PLASMA.2015.7179925Google Scholar
- 9.Y.-M. Shin, L. R. Barnett, and N. C. Luhmann, IEEE Trans. Electron Devices 56, 706 (2009).ADSCrossRefGoogle Scholar
- 10.A. Baig, D. Gamzina, R. Barchfeld, C. Domier, L. R. Barnett, and N. C. Luhmann, Phys. Plasmas 19, 093110 (2012).ADSCrossRefGoogle Scholar
- 11.M. Field et al., in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2014, p. 225.Google Scholar
- 12.B. Levush et al., in Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, South Korea, 2009. https://doi.org/10.1109/ICIMW.2009.5325772Google Scholar
- 13.J. Zhao et al., in Proc. IEEE Int. Vacuum Electronics Conf., Bangalore, India, 2011, p. 41.Google Scholar
- 14.J. Zhao, D. Gamzina, A. Baig, L. Barnett, N. C. Luhmann, Na Li, and Ji Li, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2012, p. 47.Google Scholar
- 15.B. Ch. Dyubua and O. V. Polivnikova, Elektron. Tekh., Ser. 1: SVCh-Tekh., No. 4, 187 (2013).Google Scholar
- 16.S. N. Treneva, SU Author’s Certificate No. 105480 (1955).Google Scholar
- 17.T. Kimura, J. Atkinson, S. Forrest, T. Grant, T. Hunter, M. Field, R. Borwick, and B. Brar, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2012, p. 195.Google Scholar
- 18.X. Shi, Z. Wang, X. Tang, T. Tang, H. Gong, Q. Zhou, W. Bo, Y. Zhang, Z. Duan, Y. Wei, Y. Gong, and J. Feng, IEEE Trans. Plasma Sci. 42, 3996 (2014).ADSCrossRefGoogle Scholar
- 19.J. E. Atkinson et al., in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 97.Google Scholar
- 20.B. C. Stockwell et al., in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 451.Google Scholar
- 21.M. A. Basten and J. H. Booske, J. Appl. Phys. 85, 6313 (1999).ADSCrossRefGoogle Scholar
- 22.Y. Zheng, D. Gamzina, B. Popovic, and N. C. Luhmann, IEEE Trans. Electron Devices 63, 4466 (2016).ADSCrossRefGoogle Scholar
- 23.Y. Zheng, D. Gamzina, N. C. Luhmann, and M. Moran, in Proc. IEEE Int. Vacuum Electronics Conf., London, England, 2017.Google Scholar
- 24.G. A. Spindt, J. Appl. Phys. 39, 3504 (1968).ADSCrossRefGoogle Scholar
- 25.G. Ulisse, C. Ciceroni, F. Brunetti, and A. Di Carlo, IEEE Trans. Electron Devices 61, 2558 (2014).CrossRefGoogle Scholar
- 26.Yu. V. Gulyaev, N. I. Sinitsyn, G. V. Torgashov, A. I. Zhbanov, I. G. Torgashov, and S. G. Saveliev, J. Commun. Technol. Electron. 48, 1288 (2003).Google Scholar
- 27.V. A. Galperin, A. A. Zhukov, A. A. Pavlov, S. N. Skorik, Yu. P. Shaman, and A. A. Shamanaev, Semiconductors 48, 1742 (2014).ADSCrossRefGoogle Scholar
- 28.A. T. Rakhimov, Phys.-Usp. 43, 926 (2000).ADSCrossRefGoogle Scholar
- 29.R. K. Yafarov, P. D. Shalaev, and A. R. Yafarov, Radiotekhnika, No. 7, 41 (2016).Google Scholar
- 30.D. R. Whaley et al., IEEE Trans. Electron Devices 56, 896 (2009).ADSCrossRefGoogle Scholar
- 31.D. R. Whaley, R. Duggal, C. Armstrong, et al., in Proc. IEEE Int. Vacuum Electronics Conf., Paris, France, 2013. doi 10.1109/IVEC.2013.6571009Google Scholar
- 32.G. Ulisse, F. Brunetti, and A. Carlo, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 449.Google Scholar
- 33.K. H. Gilchrist, J. R. Piascik, B. R. Stoner, E. J. Radauscher, J. J. Amsden, C. B. Parker, and J. T. Glass, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2014, p. 155.Google Scholar
- 34.E. E. Martin, J. K. Trolan, and W. P. Dyke, J. Appl. Phys. 31, 782 (1960).ADSCrossRefGoogle Scholar
- 35.P. M. Meleshkevich, Elektron. Tekh., Ser. 1: SVCh-Tekh., No. 4, 6 (2016).Google Scholar
- 36.A. A. Burtsev, A. A. Pavlov, E. P. Kitsyuk, Yu. A. Grigor’ev, A. V. Danilushkin, and K. V. Shumikhin, Tech. Phys. Lett. 43, 542 (2017).ADSCrossRefGoogle Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018