Skip to main content
Log in

Influence of Intake/Exhaust Channel Lateral Profiling on Thermomechanics of Pulsating Flows

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The hypothesis that pipeline lateral profiling can be used to regulate pulsating flows in the air-gas systems of energy machines is tested. The results of the physical simulation of gas dynamics and local heat transfer in the intake and exhaust channels of various configurations in the piston internal combustion engine in the conditions of gas-dynamic nonstationarity are presented. We have established that the lateral profiling of intake and exhaust pipes promotes the stabilization of gas flows in the air-gas systems of the engine, and decreases the intensity of the local heat transfer by up to 30%, depending on the initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Kh. Draganov, M. G. Kruglov, and V. S. Obukhova, Engineering of Inlet and Outlet Channnels of Internal Combustion Engines (Vishcha Shkola, Kiev, 1987).

    Google Scholar 

  2. J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988).

    Google Scholar 

  3. B. P. Zhilkin, V. V. Lashmanov, L. V. Plotnikov, and D. S. Shestakov, Optimizing the Processes in Gas–Air Paths of Reciprocating Internal Combustion Engines: Monograph (Ural. Fed. Univ., Yekaterinburg, 2015).

    Google Scholar 

  4. B. A. Sharoglazov and V. V. Shishkov, Reciprocating Engines: Theory, Modeling, and Calculation of Processes (Yuzhno-Ural. Gos. Univ., Chelyabinsk, 2011).

    Google Scholar 

  5. R. Z. Kavtaradze, Theory of Reciprocating Engines. Special Chapters (Mosk. Gos. Tekh. Univ., Moscow, 2008).

    Google Scholar 

  6. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations (Wiley, London, 1971).

    MATH  Google Scholar 

  7. N. S. Liao and C. C. Wang, in Proc. 1st World Conf. on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Dubrovnik, Croatia, 1988, p. 536.

    Google Scholar 

  8. N. N. Simakov, Tech. Phys. 61, 1806 (2016).

    Article  Google Scholar 

  9. J. Sucec, Int. J. Heat Mass Transfer 45, 1631 (2002).

    Article  Google Scholar 

  10. A. E. Goltsman, I. A. Davletshin, N. I. Mikheev, and A. A. Paereliy, Thermophys. Aeromech. 22, 319 (2015).

    Article  ADS  Google Scholar 

  11. J. S. Park, M. F. Taylor, and D. M. McEligot, in Proc. 7th Int. Heat Transfer Conf., Munchen, Germany, 1982, Vol. 3, p. 105.

    Google Scholar 

  12. I. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience, 1962).

    MATH  Google Scholar 

  13. S. N. Plokhov, L. V. Plotnikov, and B. P. Zhilkin, RF Utility Model Patent No. 81338 (2009).

    Google Scholar 

  14. B. T. Skelly, D. R. Miller, and T. H. Meyer, Boundary-Layer Meteorol. 105, 275 (2002).

    Article  ADS  Google Scholar 

  15. I. L. Povkh, Aerodynamic Experiment in Mechanical Engineering (Mashinostroenie, Leningrad, 1974).

    Google Scholar 

  16. P. Bradshaw, An Introduction to Turbulence and Its Measurement (Pergamon, 1971).

    MATH  Google Scholar 

  17. J. F. Foss et al., Meas. Sci. Technol. 15, 2248 (2004).

    Article  ADS  Google Scholar 

  18. S. S. Kutateladze, Heat Transfer and Hydrodynamic Resistance: Handbook (Energoatomizdat, Moscow, 1990).

    Google Scholar 

  19. I. E. Idel’chik, Aerohydrodynamics of Processing Units (Mashinostroenie, Moscow, 1983).

    Google Scholar 

  20. L. V. Plotnikov, B. P. Zhilkin, and Yu. M. Brodov, Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 12, 35 (2015).

    Google Scholar 

  21. L. V. Plotnikov, B. P. Zhilkin, and Y. M. Brodov, Procedia Eng. 150, 111 (2016).

    Article  Google Scholar 

  22. Yu. L. Klimontovich, Turbulent Motion and Chaos Structure: A New Approach to the Statistical Theory of Open Systems (Nauka, Moscow, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Plotnikov.

Additional information

Original Russian Text © Yu.M. Brodov, B.P. Zhilkin, L.V. Plotnikov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 3, pp. 330–336.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodov, Y.M., Zhilkin, B.P. & Plotnikov, L.V. Influence of Intake/Exhaust Channel Lateral Profiling on Thermomechanics of Pulsating Flows. Tech. Phys. 63, 319–324 (2018). https://doi.org/10.1134/S1063784218030039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218030039

Navigation