Abstract
The present work reports the magnetism analysis of zigzag and armchair forms of CuO nanoribbons by using density functional theory (DFT)-based ab initio approach. The structural stability has been confirmed through the binding energy calculation. The electronic and magnetic properties have been analyzed as a function of varied width of CuO nanoribbons, interesting information for variety of applications. The metallic and ferromagnetic behaviors of CuO nanoribbons are observed, whereas its bulk counterpart shows a p-type semiconducting and antiferromagnetic nature. The computed magnetic moments for the zigzag and armchair forms of CuO nanoribbon are in the ranges of 0.19–0.61 μB and 0.24–0.97 μB, respectively. The computed spin polarizations confirms the half or full metallic ferromagnetic nature of these nanoribbons.
This is a preview of subscription content, access via your institution.






REFERENCES
- 1
H. C. Zeng, Int. J. Nanotechnol. 4, 329 (2007).
- 2
Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, Prog. Mater. Sci. 60, 208 (2014).
- 3
H. M. Xiao, S. Y. Fu, L. P. Zhu, Y. Q. Li, and G. Yang, Eur. J. Inorg. Chem. 2007, 1966 (2007).
- 4
M. R. Quirino, G. L. Lucena, J. A. Medeiros, I. M. G. D. Santos, and M. J. C. D. Oliveira, Mater. Res. 21, e20180227 (2018).
- 5
M. A. Dar, Q. Ahsanulhaq, Y. S. Kim, J. M. Sohn, W. B. Kim, and H. S. Shin, Appl. Surf. Sci. 255, 6279 (2009).
- 6
T. H. Tran and V. T. Nguyen, Int. Scholar. Res. Notes 2014, 856592 (2014).
- 7
A. Bello, D. D. Arhin, K. Makgopa, M. Fabiane, and N. Manyala, Am. J. Mater. Sci. 4, 64 (2014).
- 8
C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu, and J. Ma, J. Phys. Chem. B 108, 17825 (2004).
- 9
J. B. Torrance, Y. Tokura, S. J. Laplaca, T. C. Huang, R. J. Savoy, and A. I. Nazzal, Solid State Comun. 66, 703 (1988).
- 10
J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
- 11
Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y. P. Chen, F. Soldera, D. Horwat, F. Mucklich, and J. F. Pierson, Phys. Rev. B 94, 245418 (2016).
- 12
M. Heinemann, B. Eifert, and C. Heiliger, Phys. Rev. B 87, 115111 (2013).
- 13
R. K. Sahoo, A. Das, K. Samantaray, S. K. Singh, R. S. Mane, H. C. Shin, J. M. Yun, and K. H. Kim, Cryst. Eng. Comm. 21, 1607 (2019).
- 14
Y. X. Zhang, M. Huang, M. Kuang, C. P. Liu, J. L. Tan, M. Dong, Y. Yuan, X. L. Zhao, and Z. Wen, Int. J. Electrochem. Sci. 8, 1366 (2013).
- 15
Q. Yu, H. Huang, R. Chen, P. Wang, H. Yang, M. Gao, X. Peng, and Z. Ye, Nanoscale 4, 2613 (2012).
- 16
B. Liu and H. C. Zeng, J. Am. Chem. Soc. 126, 8124 (2004).
- 17
K. J. Lo, H. Y. Liao, H. W. Cheng, W. C. Lin, B. Y. Yu, J. J. Shyue, and C. C. Chang, J. Nanopart. Res. 13, 669 (2011).
- 18
Z. Wang, F. Li, H. Wang, A. Wang, and S. Wu, J. Mater. Sci. 29, 16654 (2018).
- 19
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- 20
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- 21
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. S. A. Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
- 22
Atomistix ToolKit, Version 11.8. 2 and 2014.2 QuantumWise A/S. www.quantumwise.com.
- 23
R. D. Parra and H. H. Farrell, J. Phys. Chem. C 113, 4786 (2009).
- 24
A. Fathalian, J. Jalilian, and S. Shahidi, Solid State Commun. 151, 1635 (2011).
- 25
S. Paudel, T. P. Yadav, A. Srivastav, and G. C. Kaphle, J. Mater. Sci. Nanotechol. 6, 1021 (2018).
- 26
V. M. Medel, J. U. Reveles, S. N. Khannaa, V. Chauhan, P. Sen, and A. W. Castleman, Proc. Natl. Acad. Sci. U. S. A. 108, 10062 (2011).
- 27
L. Miao, R. Basak, S. Ran, Y. Xu, E. Kotta, H. He, J. D. Denlinger, Y. D. Chuang, Y. Zhao, Z. Xu, J. W. Lynn, J. R. Jeffries, S. R. Saha, I. Giannakis, P. Aynajian, C. J. Kang, Y. Wang, G. Kotliar, N. P. Butch, and L. A. Wray, Nat. Commun. 10, 644 (2019).
- 28
N. A. Cherepkov, J. Phys. B 14, 2165 (1981).
- 29
X. Han, W. Mi, and X. Wang, J. Mater. Chem. C 7, 8325 (2019).
ACKNOWLEDGMENTS
TPY is thankful to Midwestern University, Surkhet, Nepal and Central Department of Physics, Tribhuvan University, Nepal for providing the permission for higher study, also grateful to Nepal Academy of Science and Technology (NAST), Nepal for providing the doctoral fellowship. Authors would also like to thank the ABV-IIITM, Gwalior, India for providing the computational resources for carrying out this research work at CNT lab.
Author information
Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Rights and permissions
About this article
Cite this article
Yadav, T.P., Srivastava, A. & Kaphle, G.C. Magnetism in Zigzag and Armchair CuO Nanoribbons: Ab Initio Analysis. Phys. Solid State 63, 279–285 (2021). https://doi.org/10.1134/S1063783421020256
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords:
- CuO
- nanoribbon
- DFT + U
- magnetic moment
- ferromagnetism
- spin polarization
- band structure