Magnetism in Zigzag and Armchair CuO Nanoribbons: Ab Initio Analysis


The present work reports the magnetism analysis of zigzag and armchair forms of CuO nanoribbons by using density functional theory (DFT)-based ab initio approach. The structural stability has been confirmed through the binding energy calculation. The electronic and magnetic properties have been analyzed as a function of varied width of CuO nanoribbons, interesting information for variety of applications. The metallic and ferromagnetic behaviors of CuO nanoribbons are observed, whereas its bulk counterpart shows a p-type semiconducting and antiferromagnetic nature. The computed magnetic moments for the zigzag and armchair forms of CuO nanoribbon are in the ranges of 0.19–0.61 μB and 0.24–0.97 μB, respectively. The computed spin polarizations confirms the half or full metallic ferromagnetic nature of these nanoribbons.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    H. C. Zeng, Int. J. Nanotechnol. 4, 329 (2007).

    Article  ADS  Google Scholar 

  2. 2

    Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, Prog. Mater. Sci. 60, 208 (2014).

    Article  Google Scholar 

  3. 3

    H. M. Xiao, S. Y. Fu, L. P. Zhu, Y. Q. Li, and G. Yang, Eur. J. Inorg. Chem. 2007, 1966 (2007).

    Article  Google Scholar 

  4. 4

    M. R. Quirino, G. L. Lucena, J. A. Medeiros, I. M. G. D. Santos, and M. J. C. D. Oliveira, Mater. Res. 21, e20180227 (2018).

    Article  Google Scholar 

  5. 5

    M. A. Dar, Q. Ahsanulhaq, Y. S. Kim, J. M. Sohn, W. B. Kim, and H. S. Shin, Appl. Surf. Sci. 255, 6279 (2009).

    Article  ADS  Google Scholar 

  6. 6

    T. H. Tran and V. T. Nguyen, Int. Scholar. Res. Notes 2014, 856592 (2014).

    Google Scholar 

  7. 7

    A. Bello, D. D. Arhin, K. Makgopa, M. Fabiane, and N. Manyala, Am. J. Mater. Sci. 4, 64 (2014).

    Google Scholar 

  8. 8

    C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu, and J. Ma, J. Phys. Chem. B 108, 17825 (2004).

    Article  Google Scholar 

  9. 9

    J. B. Torrance, Y. Tokura, S. J. Laplaca, T. C. Huang, R. J. Savoy, and A. I. Nazzal, Solid State Comun. 66, 703 (1988).

    Article  ADS  Google Scholar 

  10. 10

    J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

    Article  ADS  Google Scholar 

  11. 11

    Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y. P. Chen, F. Soldera, D. Horwat, F. Mucklich, and J. F. Pierson, Phys. Rev. B 94, 245418 (2016).

    Article  ADS  Google Scholar 

  12. 12

    M. Heinemann, B. Eifert, and C. Heiliger, Phys. Rev. B 87, 115111 (2013).

    Article  ADS  Google Scholar 

  13. 13

    R. K. Sahoo, A. Das, K. Samantaray, S. K. Singh, R. S. Mane, H. C. Shin, J. M. Yun, and K. H. Kim, Cryst. Eng. Comm. 21, 1607 (2019).

    Article  Google Scholar 

  14. 14

    Y. X. Zhang, M. Huang, M. Kuang, C. P. Liu, J. L. Tan, M. Dong, Y. Yuan, X. L. Zhao, and Z. Wen, Int. J. Electrochem. Sci. 8, 1366 (2013).

    Google Scholar 

  15. 15

    Q. Yu, H. Huang, R. Chen, P. Wang, H. Yang, M. Gao, X. Peng, and Z. Ye, Nanoscale 4, 2613 (2012).

    Article  ADS  Google Scholar 

  16. 16

    B. Liu and H. C. Zeng, J. Am. Chem. Soc. 126, 8124 (2004).

    Article  Google Scholar 

  17. 17

    K. J. Lo, H. Y. Liao, H. W. Cheng, W. C. Lin, B. Y. Yu, J. J. Shyue, and C. C. Chang, J. Nanopart. Res. 13, 669 (2011).

    Article  ADS  Google Scholar 

  18. 18

    Z. Wang, F. Li, H. Wang, A. Wang, and S. Wu, J. Mater. Sci. 29, 16654 (2018).

    Google Scholar 

  19. 19

    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  Google Scholar 

  20. 20

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  21. 21

    J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. S. A. Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS  Google Scholar 

  22. 22

    Atomistix ToolKit, Version 11.8. 2 and 2014.2 QuantumWise A/S.

  23. 23

    R. D. Parra and H. H. Farrell, J. Phys. Chem. C 113, 4786 (2009).

    Article  Google Scholar 

  24. 24

    A. Fathalian, J. Jalilian, and S. Shahidi, Solid State Commun. 151, 1635 (2011).

    Article  ADS  Google Scholar 

  25. 25

    S. Paudel, T. P. Yadav, A. Srivastav, and G. C. Kaphle, J. Mater. Sci. Nanotechol. 6, 1021 (2018).

    Google Scholar 

  26. 26

    V. M. Medel, J. U. Reveles, S. N. Khannaa, V. Chauhan, P. Sen, and A. W. Castleman, Proc. Natl. Acad. Sci. U. S. A. 108, 10062 (2011).

    Article  ADS  Google Scholar 

  27. 27

    L. Miao, R. Basak, S. Ran, Y. Xu, E. Kotta, H. He, J. D. Denlinger, Y. D. Chuang, Y. Zhao, Z. Xu, J. W. Lynn, J. R. Jeffries, S. R. Saha, I. Giannakis, P. Aynajian, C. J. Kang, Y. Wang, G. Kotliar, N. P. Butch, and L. A. Wray, Nat. Commun. 10, 644 (2019).

    Article  ADS  Google Scholar 

  28. 28

    N. A. Cherepkov, J. Phys. B 14, 2165 (1981).

    Article  ADS  Google Scholar 

  29. 29

    X. Han, W. Mi, and X. Wang, J. Mater. Chem. C 7, 8325 (2019).

    Article  Google Scholar 

Download references


TPY is thankful to Midwestern University, Surkhet, Nepal and Central Department of Physics, Tribhuvan University, Nepal for providing the permission for higher study, also grateful to Nepal Academy of Science and Technology (NAST), Nepal for providing the doctoral fellowship. Authors would also like to thank the ABV-IIITM, Gwalior, India for providing the computational resources for carrying out this research work at CNT lab.

Author information



Corresponding author

Correspondence to A. Srivastava.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, T.P., Srivastava, A. & Kaphle, G.C. Magnetism in Zigzag and Armchair CuO Nanoribbons: Ab Initio Analysis. Phys. Solid State 63, 279–285 (2021).

Download citation


  • CuO
  • nanoribbon
  • DFT + U
  • magnetic moment
  • ferromagnetism
  • spin polarization
  • band structure