The Influence of Thermal Treatment on the Formation Mechanism of the Cu, Fe-Containing Nanocomposite Material Synthesized by the Sol–Gel Method

Abstract

The nanocomposite samples, containing copper and iron species in the silica matrix, were prepared by annealing at temperatures up to 1100°C. The samples were investigated by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and cyclic voltammetry. The results of the performed study depict to the presence of a temperature gradient, which acts on the sample during the annealing treatment in the furnace. For the first time, the influence of the temperature gradient on the formation mechanism of the samples was discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. 1

    C. J. Brinker and G. W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic, Boston, 1990), p. 1.

    Google Scholar 

  2. 2

    V. N. Nikolic, Preparation and Characterization of Fe 2 O 3 -SiO 2 Nanocomposite for Biomedical Application, Mineralogy—Significance and Applications (IntechOpen, Rijeka, 2019).

    Google Scholar 

  3. 3

    O. M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, and M. Bououdina, Superlatt. Microstruct. 52, 793 (2012).

    Article  ADS  Google Scholar 

  4. 4

    Y. Sheng, J. Yang, F. Wang, L. Liu, H. Liu, C. Yan, and Z. Guo, Appl. Surf. Sci. 465, 154 (2019).

    Article  ADS  Google Scholar 

  5. 5

    N. S. Kumar, R. P. Suvarna, and K. C. B. Naidu, Mater. Chem. Phys. 223, 241 (2019).

    Article  Google Scholar 

  6. 6

    J. A. Lett, M. Sundareswari, K. Ravichandran, M. B. Latha, S. Sagadevan, and M. R. B. Johan, RSC Adv. 9, 6228 (2019).

  7. 7

    T. Fardood, S. Ramazani, A. Moradnia, F. Afshari, Z. Ganjkhanlu, and F. Yekke Zare, Chem. Methodol. 3, 696 (2019).

    Article  Google Scholar 

  8. 8

    K. Davis, R. Yarbrough, M. Froeschle, J. White, and H. Rathnayake, RSC Adv. 9, 14638 (2019).

  9. 9

    R. Bao, C. Chen, J. Xia, H. Chen, and H. Li, J. Mater. Chem. C 7, 4981 (2019).

    Article  Google Scholar 

  10. 10

    K. Suzuki, S. Sato, and M. Fujita, Nat. Chem. 2, 25 (2010).

    Article  Google Scholar 

  11. 11

    F. I. H. Rhouma, F. Belkhiria, E. Bouzaiene, M. Daoudi, K. Taibi, J. Dhahri, and R. Chtourou, RSC Adv. 9, 5206 (2019).

  12. 12

    D. S. Kolchanov, V. Slabov, K. Keller, E. Sergeeva, M. V. Zhukov, A. S. Drozdov, and A. V. Vinogradov, J. Mater. Chem. C 7, 6426 (2019).

    Article  Google Scholar 

  13. 13

    A. S. Hassanien, A. A. Akl, and A. H. Saaedi, CrystEngComm 20, 1716 (2018).

    Article  Google Scholar 

  14. 14

    M. V. Berezhnaya, O. V. Almyasheva, V. O. Mittova, A. T. Nguen, and I. Y. Mittova, Russ. J. Gen. Chem. 88, 626 (2018).

    Article  Google Scholar 

  15. 15

    S. Nayak, A. Soam, J. Nanda, C. Mahender, M. Singh, D. Mohapatra, and R. Kumar, J. Mater. Sci.-Mater. Electron. 29, 9361 (2018).

    Article  Google Scholar 

  16. 16

    U. Alam, A. Khan, D. Ali, D. Bahnemann, and M. Muneer, RSC Adv. 8, 17582 (2018).

  17. 17

    W. F. Chen, S. S. Mofarah, D. A. H. Hanaor, P. Koshy, H. K. Chen, and Y. Jiang, Inorg. Chem. 57, 7279 (2018).

    Article  Google Scholar 

  18. 18

    A. H. Ashour, A. I. El-Batal, M. A. Maksoud, G. S. El-Sayyad, S. Labib, E. Abdeltwab, and M. M. El-Okr, Particuology 40, 141 (2018).

    Article  Google Scholar 

  19. 19

    K. Zheng and A. R. Boccaccini, Adv. Colloid Interface Sci. 249, 363 (2017).

    Article  Google Scholar 

  20. 20

    T. Chen, Y. Ma, Q. Guo, M. Yang, and H. Xia, J. Mater. Chem. A 5, 3179 (2017).

    Article  Google Scholar 

  21. 21

    S. T. Fardood, A. Ramazani, and S. W. Joo, J. Appl. Chem. Res. 11, 8 (2017).

    Google Scholar 

  22. 22

    Y. Sheng, J. Yang, F. Wang, L. Liu, H. Liu, C. Yan, and Z. Guo, Appl. Surf. Sci. 465, 154 (2019).

    Article  ADS  Google Scholar 

  23. 23

    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, and S. Bagheri, J. Mater. Sci.: Mater. Electron. 28, 14965 (2017).

    Google Scholar 

  24. 24

    B. Ritter, P. Haida, T. Krahl, G. Scholz, and E. Kemnitz, J. Mater. Chem. C 5, 5444 (2017).

    Article  Google Scholar 

  25. 25

    J. N. Hasnidawani, H. N. Azlina, H. Norita, N. N. Bonnia, S. Ratim, and E. S. Ali, Proc. Chem. 19, 211 (2016).

    Article  Google Scholar 

  26. 26

    N. N. M. Zorkipli, N. H. M. Kaus, and A. A. Mohamad, Proc. Chem. 19, 626 (2016).

    Article  Google Scholar 

  27. 27

    F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, L. Xie, and H. Li, RSC Adv. 6, 79343 (2016).

  28. 28

    T. M. Wandre, P. N. Gaikwad, A. S. Tapase, K. M. Garadkar, S. A. Vanalakar, P. D. Lokhande, R. Sasikala, and P. P. Hankare, J. Mater. Sci.-Mater. Electron. 27, 825 (2016).

    Article  Google Scholar 

  29. 29

    K. M. Farhan, A. H. Ansari, M. Hameedullah, E. Ahmad, F. M. Husain, Q. Zia, and U. Baig, Sci. Rep. 6, 27689 (2016).

    Article  ADS  Google Scholar 

  30. 30

    R. M. Alwan, Q. A. Kadhim, K. M. Sahan, R. A. Ali, R. J. Mahdi, N. A. Kassim, and A. N. Jassim, J. Nanosci. Nanotechnol. 5, 1 (2015).

    Google Scholar 

  31. 31

    R. Lorenzi, A. Paleari, N. V. Golubev, E. S. Ignateva, V. N. Sigaev, M. Niederberger, and A. Lauria, J. Mater. Chem. C 3, 41 (2015).

    Article  Google Scholar 

  32. 32

    N. A. Samat and R. M. Nor, Ceram. Int. 39, S545 (2013).

    Article  Google Scholar 

  33. 33

    F. Mirjalili, M. Hasmaliza, and L. C. Abdullah, Ceram. Int. 36, 1253 (2010).

    Article  Google Scholar 

  34. 34

    S. Naghibi, M. A. F. Sani, and H. R. M. Hosseini, Ceram. Int. 40, 4193 (2014).

    Article  Google Scholar 

  35. 35

    S. L. Isley and R. L. Penn, J. Phys. Chem. B 110, 15134 (2006).

    Article  Google Scholar 

  36. 36

    X. Haiyan, Z. Ai, and L. Zhang, J. Phys. Chem. C 113, 16625 (2009).

    Article  Google Scholar 

  37. 37

    C. Costa, C. Pinheiro, I. Henriques, and C. A. T. Laia, ACS Appl. Mater. Interfaces 4, 1330 (2012).

    Article  Google Scholar 

  38. 38

    L. Zhang and Y. Wu, J. Nanomater. 2013, 1 (2013).

    Google Scholar 

  39. 39

    D. Prentice, M. L. Pantoya, and A. E. Gash, Energy Fuels 20, 2370 (2006).

    Article  Google Scholar 

  40. 40

    M. Grujic-Brojcin, S. Armakovic, N. Tomic, B. Abra-movic, A. Golubovic, B. Stojadinovic, A. Kremenovic, B. Babic, Z. Dohcevic-Mitrovic, and M. Scepanovic, Mater. Charact. 88, 30 (2014).

    Article  Google Scholar 

  41. 41

    C. Karunakaran, P. Vinayagamoorthy, and J. Jayabharathi, Superlatt. Microstruct. 64, 569 (2013).

    Article  ADS  Google Scholar 

  42. 42

    K. L. Foo, U. Hashim, K. Muhammad, and C. H. Voon, Nanoscale Res. Lett. 9, 429 (2014).

    Article  ADS  Google Scholar 

  43. 43

    V. N. Nikolic, M. Vasic, and M. M. Milic, Ceram. Int. 44, 21145 (2018).

    Article  Google Scholar 

  44. 44

    V. N. Nikolic, M. M. Vasic, and D. Kisic, J. Solid State Chem. 275, 187 (2019).

    Article  ADS  Google Scholar 

  45. 45

    V. N. Nikolic, M. M. Milic, J. D. Zdravkovic, and V. Spasojevic, Russ. J. Phys. Chem. A 93, 377 (2019).

    Article  Google Scholar 

  46. 46

    V. N. Nikolic, M. Tadic, L. Kopanja, N. Cvjeticanin, and V. Spasojevic, Ceram. Int. 43, 3147 (2017).

    Article  Google Scholar 

  47. 47

    C. Karunakaran, V. Rajeswari, and P. Gomathisankar, Mater. Sci. Semicond. Proc. 14, 133 (2011).

    Article  Google Scholar 

  48. 48

    M. M. N. Ansari and S. Khan, Phys. B (Amsterdam, Neth.) 520, 21 (2017).

  49. 49

    I. A. Rahman and V. Padavettan, J. Nanomater. 2012, 1 (2012).

    Article  Google Scholar 

  50. 50

    T. Wang, S. H. Song, X. L. Wang, J. J. Chen, and M. L. Tan, J. Sol-Gel Sci. Technol. 85, 356 (2018).

    Article  Google Scholar 

  51. 51

    Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun, W. Hu, and F. Deng, J. Solid State Chem. 178, 1395 (2005).

    Article  ADS  Google Scholar 

  52. 52

    M. I. Zaki, G. A. Mekhemer, N. E. Fouad, T. C. Jagadale, and S. B. Ogale, Mater. Res. Bull. 45, 1470 (2010).

    Article  Google Scholar 

  53. 53

    C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, J. Am. Chem. Soc. 123, 4344 (2001).

    Article  Google Scholar 

  54. 54

    J. J. Beltran, C. A. Barrero, and A. Punnoose, J. Solid State Chem. 240, 30 (2016).

    Article  ADS  Google Scholar 

  55. 55

    A. Romeiro, D. Freitas, M. E. Azenha, M. Canle, and H. D. Burrows, Photochem. Photobiol. Sci. 16, 935 (2017).

    Article  Google Scholar 

  56. 56

    B. G. Trewyn, I. I. Slowing, S. Giri, H. T. Chen, and V. S. Y. Lin, Acc. Chem. Res. 40, 846 (2007).

    Article  Google Scholar 

  57. 57

    Y. Lu, Y. Yin, B. T. Mayers, and Y. Xia, Nano Lett. 2, 183 (2002).

    Article  ADS  Google Scholar 

  58. 58

    B. Manikandan, T. Endo, S. Kaneko, K. R. Murali, and R. John, J. Mater. Sci.-Mater. Electron. 29, 9474 (2018).

    Article  Google Scholar 

  59. 59

    P. K. Deheri, V. Swaminathan, S. D. Bhame, Z. Liu, and R. V. Ramanujan, Chem. Mater. 22, 6509 (2010).

    Article  Google Scholar 

  60. 60

    M. J. Pawar and A. D. Khajone, J. Chem. Pharm. Res. 4, 1880 (2012).

    Google Scholar 

  61. 61

    A. E. Danks, S. R. Hall, and Z. J. M. H. Schnepp, Mater. Horiz. 3, 91 (2016).

    Article  Google Scholar 

  62. 62

    M. Alsawafta, Y. M. Golestani, T. Phonemac, S. Badilescu, V. Stancovski, and V. V. Truong, J. Electrochem. Soc. 161, H276 (2014).

    Article  Google Scholar 

  63. 63

    J. D. Mackenzie and E. P. Bescher, Acc. Chem. Res. 40, 810 (2007).

    Article  Google Scholar 

  64. 64

    S. Ramesh, J. V. Ramaclus, E. Mosquera, and B. B. Das, RSC Adv. 6, 6336 (2016).

  65. 65

    V. G. Kessler, J. Sol Gel Sci. Technol. 51, 264 (2009).

    Article  Google Scholar 

  66. 66

    Z. H. Xiao, S. H. Jin, J. H. Wang, and C. H. Liang, Hyperfine Interact. 217, 151 (2013).

    Article  ADS  Google Scholar 

  67. 67

    I. P. Prakash, N. Muralidharan, Nallamuthu, M. Venkteswarlu, and N. Satyanarayana, NSTI–Nanotech. 2, 115 (2005).

  68. 68

    N. Rajic, M. Ceh, R. Gabrovsek, and V. Kaucic, J. Am. Ceram. Soc. 85, 1719 (2002).

    Article  Google Scholar 

  69. 69

    ICSD Inorganic Crystals Structure Database (FIZ Karlsruhe, Eggenstein-Leopoldshafen, Germany, 2014), Vol. 2.

  70. 70

    L. Lutterotti, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 334 (2010).

    Google Scholar 

  71. 71

    A. C. Bent, Bulletin 130, 1 (1925).

    Google Scholar 

  72. 72

    D. Nicholls, Copper, Complexes and First-Row Transition Elements (Macmillan Education, UK, 1974), p. 281.

    Google Scholar 

  73. 73

    M. Meyn, K. Beneke, and C. Lagaly, Inorg. Chem. 32, 1209 (1993).

    Article  Google Scholar 

  74. 74

    R. M. Cornell and R. Giovanoli, Polyhedron 7, 385 (1988).

    Article  Google Scholar 

  75. 75

    U. Schwertmann and W. R. Fischer, Z. Anorg. Allgem. Chem. 346, 137 (1966).

    Google Scholar 

  76. 76

    Y. Cudennec and A. Lecerf, J. Solid State Chem. 179, 716 (2006).

    Article  ADS  Google Scholar 

  77. 77

    R. Frison, G. Cernuto, A. Cervellino, O. Zaharko, G. M. Colonna, A. Guagliardi, and N. Masciocchi, Chem. Mater. 25, 4820 (2013).

    Article  Google Scholar 

  78. 78

    S. P. Schwaminger, D. Bauer, P. Fraga-Garcia, F. E. Wagner, and S. Berensmeier, CrystEngComm. 19, 246 (2017).

    Article  Google Scholar 

  79. 79

    L. E. Lagoeiro, J. Metamorph. Geol. 16, 415 (1998).

    Article  ADS  Google Scholar 

  80. 80

    T. S. Gendler, V. P. Shcherbakov, M. J. Dekkers, A. K. Gapeev, S. K. Gribov, and E. McClelland, Geophys. J. Int. 160, 815 (2005).

    Article  ADS  Google Scholar 

  81. 81

    K. F. McCarty, M. Monti, S. Nie, D. A. Siegel, E. Starodub, F. El Gabaly, A. H. McDaniel, A. Shavorskiy, T. Tyliszczak, H. Bluhm, N. C. Bartelt, and J. de la Figuera, J. Phys. Chem. C 118, 19786 (2014).

    Article  Google Scholar 

  82. 82

    A. U. Gehring, H. Fischer, M. Louvel, K. Kunze, and P. G. Weidler, Geophys. J. Int. 179, 1361 (2009).

    Article  ADS  Google Scholar 

  83. 83

    http://www1.lsbu.ac.uk/water/water_vibrational_spectrum.html. Accessed January 15, 2020.

  84. 84

    K. Coenen, F. Gallucci, B. Mezari, E. Hensen, and M. van Sint Annaland, J. CO2 Util. 24, 228 (2018).

  85. 85

    V. Yu. Dolmatova, I. I. Kulakova, V. Myllymakic, A. Vehanenc, A. A. Bochechkad, A. N. Panovad, and B. T. T. Nguyene, J. Superhard Mater. 38, 58 (2016).

    Article  Google Scholar 

  86. 86

    L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, and B. Dragneam, Chem. Mater. 19, 3624 (2007).

    Article  Google Scholar 

  87. 87

    http://lisa.chem.ut.ee/IR_spectra/conservation_materials/ethanol/. Accessed December 15, 2019.

  88. 88

    E. R. Lippincott, A. van Valkenburg, C. E. Weir, and E. N. Bunting, J. Res. Natl. Bur. Stand. 61, 61 (1958).

    Article  Google Scholar 

  89. 89

    H. A. Benessi and A. C. Jones, J. Phys. Chem. 63, 179 (1959).

    Article  Google Scholar 

  90. 90

    Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, Chem. Phys. Lett. 378, 299 (2003).

    Article  ADS  Google Scholar 

  91. 91

    F. Iacona, G. Ceriola, and F. la Via, Mater. Sci. Semicond. Process. 4, 43 (2001).

    Article  Google Scholar 

  92. 92

    X. Li, Z. Cao, Z. Zhang, and H. Dang, Appl. Surf. Sci. 252, 7856 (2006).

    Article  ADS  Google Scholar 

  93. 93

    Q. Guo, D. Huang, X. Kou, W. Cao, L. Li, L. Ge, and J. Li, Ceram. Int. 43, 192 (2017).

    Article  Google Scholar 

  94. 94

    T. Gholami, M. Salavati-Niasari, M. Bazarganipour, and E. Noori, Superlatt. Microstruct. 61, 33 (2013).

    Article  ADS  Google Scholar 

  95. 95

    H. Yoshino, K. Kamiya, and H. Nasu, J. Non-Cryst. Solids 126, 68 (1990).

    Article  ADS  Google Scholar 

  96. 96

    H. Kaya, D. Ngo, S. Gin, and S. H. Kim, J. Non-Cryst. Solids 52, 119722 (2020).

    Article  Google Scholar 

  97. 97

    F. Rubio, J. Rubio, and J. L. Oteo, Spectrosc. Lett. 31, 199 (1998).

    Article  ADS  Google Scholar 

  98. 98

    K. M. Davis and M. Tomozawa, J. Non-Cryst. Solids 201, 177 (1996).

    Article  ADS  Google Scholar 

  99. 99

    R. H. Stolen and G. E. Walrafen, J. Chem. Phys. 64, 2623 (1976).

    Article  ADS  Google Scholar 

  100. 100

    J. D. Mackenzie and S. A. Rice, Phys. Today 14, 62 (1961).

    Article  Google Scholar 

  101. 101

    V. V. T. Padil and M. Cernik, Int. J. Nanomed. 8, 889 (2013).

    Google Scholar 

  102. 102

    M. A. Dar, S. H. Nam, Y. S. Kim, and W. B. Kim, J. Solid State Electrochem. 14, 1719 (2010).

    Article  Google Scholar 

  103. 103

    J. Zhao, F. E. Huggins, Z. Feng, and G. P. Huffman, Clay Clay Miner. 42, 737 (1994).

    Article  Google Scholar 

  104. 104

    M. D. P. Silva, F. C. Silva, F. S. M. Sinfronio, A. R. Paschoal, E. N. Silva, and C. W. A. Paschoal, J. Alloys Compd. 584, 573 (2014).

    Article  Google Scholar 

  105. 105

    W. P. Gates, J. T. Kloprogge, J. Madejová, and F. Bergaya, Infrared and Raman Spectroscopies of Clay Minerals (Elsevier, Amsterdam, 2017), p. 1.

    Google Scholar 

  106. 106

    R. S. Pandurangi, M. S. Seehra, B. L. Razaboni, and P. Bolsaitist, Environ. Health Perspect. 86, 327 (1990).

    Article  Google Scholar 

  107. 107

    A. P. Mirgorodskii, A. N. Lazarev, and I. P. Makarenko, Opt. Spectrosc. 29, 282 (1970).

    Google Scholar 

  108. 108

    B. P. Jelle, T.-N. Nilsen, P. J. Hovde, and A. Gustavsen, J. Build. Phys. 36, 99 (2012).

    Article  Google Scholar 

  109. 109

    V. N. Nikolic, Magn. Nanomater. Electrocatal., Magnetochem.: Mater. Appl. 66, 34 (2020).

    Article  Google Scholar 

  110. 110

    M. Catauro, F. Barrino, G. Dal Poggetto, G. Crescente, S. Piccolella, and S. Pacifico, Materials 13, 394 (2020).

    Article  ADS  Google Scholar 

  111. 111

    A. Jitianu, M. Crisan, A. Meghea, I. Rau, and M. Zaharescu, J. Mater. Chem. 12, 1401 (2002).

    Article  Google Scholar 

  112. 112

    G. Anbalagan, A. R. Prabakaran, and S. Gunasekaran, J. Appl. Spectrosc. 77, 95 (2010).

    Article  ADS  Google Scholar 

  113. 113

    P. C. Schlecht and P. F. O’Connor, Third Supplement to NIOSH Manual of Analytical Methods (NMAM), 4th ed. (Natl. Inst. Occup. Safety and Health, 2003).

    Google Scholar 

  114. 114

    J. Hlavay, K. Jonas, S. Elek, and J. Inczedy, Clay. Clay Miner. 26, 139 (1978).

    Article  ADS  Google Scholar 

  115. 115

    E. Nemecz and K. Rethy, Rep. Veszp. Univ. Chem. Eng. 5, 287 (1961).

    Google Scholar 

  116. 116

    L. B. Capeletti and J. H. Zimnoch, Fourier Transform Infrared and Raman Characterization of Silica-Based Materials, Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences (IntechOpen, Rijeka, Croatia, 2016).

    Google Scholar 

  117. 117

    M. Cekerevac, M. Simicic, Lj. N. Bujanovic, and N. Popovic, Corros. Sci. 64, 204 (2012).

    Article  Google Scholar 

  118. 118

    M. J. Song, S. W. Hwang, and D. Whang, Talanta 80, 1648 (2010).

    Article  Google Scholar 

  119. 119

    J. Ping, S. Ru, K. Fan, J. Wu, and Y. Ying, Microchim. Acta 171, 117 (2010).

    Article  Google Scholar 

  120. 120

    T. M. Nahir and E. F. Bowden, J. Electroanal. Chem. 410, 9 (1996).

    Article  Google Scholar 

  121. 121

    H. H. Uhlig and J. R. Gilman, Corrosion 20, 289t (1964).

    Article  Google Scholar 

  122. 122

    S. D. Giri and A. Sarkar, J. Electrochem. Soc. 163, H252 (2016).

    Article  Google Scholar 

  123. 123

    J. Coates, Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation (Wiley, New York, 2007).

    Google Scholar 

  124. 124

    R. Bruckner, J. Non-Cryst. Solids 5, 123 (1970).

    Article  ADS  Google Scholar 

  125. 125

    A. C. D. Chaklader and A. L. Roberts, J. Am. Ceram. Soc. 44, 35 (1961).

    Article  Google Scholar 

Download references

Funding

The research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. N. Nikolić.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikolić, V.N., Vasić, M.M., Milikić, J. et al. The Influence of Thermal Treatment on the Formation Mechanism of the Cu, Fe-Containing Nanocomposite Material Synthesized by the Sol–Gel Method. Phys. Solid State 63, 332–354 (2021). https://doi.org/10.1134/S1063783421020207

Download citation

Keywords:

  • temperature gradient
  • nanocomposite
  • sol–gel
  • XRD
  • FTIR