Radial Domains in DyPr–FeCo–B Microwires


In DyPr–FeCo–B microwires with easy magnetization axis directed along the microwire axis, domains with radial magnetization are detected using magneto-optical indicator films. The width of radial domains decreases as the field increases to 30 mT and increases with the microwire diameter in the range of 60–105 μm. In wires of smaller diameter, the critical field of radial domain formation is lower. The effect of the periodic relief produced by scribing on the magnetization distribution perpendicular to the microwire is detected.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    K.-W. Moon, D.-H. Kim, Ch. Kim, D.-Yu. Kim, S.‑B. Choe, and Ch. Hwang, J. Phys. D 50, 125003 (2017).

    ADS  Article  Google Scholar 

  2. 2

    P. Corte-León, J. M. Blanco, V. Zhukova, M. Ipatov, J. Gonzalez, M. Churyukanova, S. Taskaev, and A. Zhukov, Sci. Rep. 9, 12427 (2019).

    ADS  Article  Google Scholar 

  3. 3

    R. Varga, A. Zhukov, J. M. Blanco, and M. Ipatov, Phys. Rev. B 74, 212405 (2006).

    ADS  Article  Google Scholar 

  4. 4

    V. Zhukova, P. Corte-Leon, M. Ipatov, J. M. Blanco, L. Gonzalez-Legarreta, and A. Zhukov, Sensors 19, 4767 (2019).

    Article  Google Scholar 

  5. 5

    H. Peng, F. Qin, and M. Phan, Ferromagnetic Microwire Composites, From Sensors to Microwave Applications (Springer, Cham, Switzerland, 2016).

    Google Scholar 

  6. 6

    S. V. Shcherbinin, S. O. Volchkov, A. A. Chlenova, and G. V. Kurlyandskaya, Key Eng. Mater. 826, 19 (2019).

    Article  Google Scholar 

  7. 7

    T. Henighan, A. Chen, G. Vieira, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, Biophys. J. 98, 412 (2010).

    ADS  Article  Google Scholar 

  8. 8

    P. Kollmannsberger and B. Fabry, Rev. Sci. Instrum. 78, 114301 (2007).

    ADS  Article  Google Scholar 

  9. 9

    A. H. B. de Vries, B. E. Krenn, R. vanDriel, and J. S. Kanger, Biophys. J. 88, 2137 (2005).

    Article  Google Scholar 

  10. 10

    M. Vazquez, Magnetic Nano- and Microwires. Design, Synthesis, Properties and Applications, 2nd ed. (Woodhead, Cambridge, UK, 2020).

    Google Scholar 

  11. 11

    M. Vazquez, C. Gomez-Polo, D.-X. Chen, and A. Hemando, IEEE Trans. Magn. 30, 907 (1994).

    ADS  Article  Google Scholar 

  12. 12

    M. Vazquez and A. Hemando, J. Phys. D 29, 939 (1996).

    ADS  Article  Google Scholar 

  13. 13

    D. Sander, S. O. Valenzuela, D. Makarov, C. H. Marrows, E. E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, P. Pirro, B. Hillebrands, A. D. Kent, T. Jungwirth, O. Gutfleisch, C. G. Kim, and A. Berger, J. Phys. D 50, 363001 (2017).

    Article  Google Scholar 

  14. 14

    P. Rinklin, H.-J. Krause, and B. Wolfruma, Lab Chip 16, 4749 (2016).

    Article  Google Scholar 

  15. 15

    M. Vázquez, M. Hernández-Vélez, A. Asenjo, D. Navas, K. Pirota, V. Prida, O. Sánchez, and J. L. Baldonedo, Phys. B (Amsterdam, Neth.) 384, 36 (2006).

  16. 16

    A. S. Antonov, N. A. Buznikov, A. L. D’yachkov, A. A. Rakhmanov, V. V. Samsonova, and T. A. Furmanova, J. Commun. Techn. Electron. 54, 1315 (2009).

    Article  Google Scholar 

  17. 17

    R. B. Morgunov, O. V. Koplak, V. P. Piskorskii, D. V. Korolev, R. A. Valeev, and A. D. Talantsev, J. Magn. Magn. Mater. 497, 166004 (2019).

    Article  Google Scholar 

  18. 18

    O. V. Koplak, E. V. Dvoretskaya, A. D. Talantsev, D. V. Korolev, R. A. Valeev, V. P. Piskorskii, A. S. Denisova, and R. B. Morgunov, Phys. Solid State 62, 648 (2020).

    ADS  Article  Google Scholar 

  19. 19

    O. V. Koplak, E. V. Dvoretskaya, D. V. Korolev, R. A. Valeev, V. P. Piskorskii, A. S. Denisova, and R. B. Morgunov, Phys. Solid State 62, 1333 (2020).

    Article  Google Scholar 

  20. 20

    O. V. Koplak, V. L. Sidorov, E. I. Kunitsyna, R. A. Valeev, D. V. Korolev, V. P. Piskorskii, and R. B. Morgunov, Phys. Solid State 61, 2061 (2019).

    ADS  Article  Google Scholar 

  21. 21

    Yu. Kabanov, A. Zhukov, V. Zhukova, and G. Gonzalez, Appl. Phys. Lett. 87, 142507 (2005).

    ADS  Article  Google Scholar 

  22. 22

    V. I. Nikitenko, V. S. Gornakov, L. M. Dedukh, A. F. Khapikov, L. H. Bennett, R. D. McMichael, L. J. Swartzendruber, A. J. Shapiro, and M. J. Donahue, J. Appl. Phys. 79, 6073 (1996).

    ADS  Article  Google Scholar 

  23. 23

    I. I. Maslenikov, V. N. Reshetov, and A. S. Useinov, Instrum. Exp. Tech. 58, 711 (2015).

    Article  Google Scholar 

  24. 24

    R. Gemperl and A. Gemperl, Phys. Status Solidi 26, 207 (1968).

    Article  Google Scholar 

  25. 25

    W. Szmaja, J. Magn. Magn. Mater. 153, 215 (1996).

    ADS  Article  Google Scholar 

Download references


O.V. Koplak acknowledges the support of the Russian Foundation for Basic Research (project “Stability” no. 20-32-70025); E.V. Dvoretskaya acknowledges the support of the Russian Foundation for Basic Research (project no. 20-33-90256); R.B. Morgunov acknowledges the support of the President of the Russian Federation, Federal Program of Support for Leading Scientific Schools (project no. 2644.2020.2). This study was performed within the program AAAA-A19-119092390079-8 of the Institute of Problems of Chemical Physics, Russian Academy of Sciences.

Author information



Corresponding author

Correspondence to O. V. Koplak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koplak, O.V., Sidorov, V.L., Dvoretskaya, E.V. et al. Radial Domains in DyPr–FeCo–B Microwires. Phys. Solid State 63, 266–271 (2021). https://doi.org/10.1134/S1063783421020116

Download citation


  • domain structure
  • stray fields
  • microwires
  • rare-earth magnets
  • magnetic domains
  • ferrimagnets