Distribution of Misfit Dislocations and Elastic Mechanical Stresses in Metamorphic Buffer InAlAs Layers of Various Constructions

Abstract

The equilibrium distributions of the misfit dislocation density ρ(z) and elastic stresses ε(z) are calculated along the direction of the epitaxial growth of the metamorphic InAlAs/GaAs(001) layer with higher In content (to 87 mol %) and various profiles of varying the composition: step, linear, and root. The calculations are performed using the method based on iteration searching for the minimum total energy of the system. It is shown that the largest differences between various constructions of the buffer layer are observed in the character of distributions ρ(z), rather than ε(z). Unlike the traditional constructions with a step and linear gradients of the composition, which are characterized by a quite homogeneous distribution of misfit dislocations, in a buffer layer with a root composition gradient, the main part of such dislocations is concentrated in the lower part of the layer near the heteroboundary with a GaAs substrate, and their density sharply decreases by more than one order of value along the layer thickness, achieving the value minimum for all abovementioned constructions. In spite of the fact that the important effect of interacting the dislocations to each other is not taken into account in this work, the calculations enable us to establish the main peculiarities of the distributions ρ(z) and ε(z) in various metamorphic buffer InAlAs layers, which were observed experimentally before. Thus, this approach can be effectively used when designing optimal constructions of the device metamorphic heterostructures.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    G. B. Galiev, I. S. Vasil’evskii, S. S. Pushkarev, E. A. Kli-mov, R. M. Imamov, P. A. Buffat, B. Dwir, and E. I. Suvorov, J. Cryst. Growth 366, 55 (2013).

    Article  ADS  Google Scholar 

  2. 2

    W. Hafez, J. Lai, and M. Feng, Electron. Lett. 39, 1447 (2003).

    Google Scholar 

  3. 3

    G. Belenky, D. Wang, Y. Lin, D. Donetsky, G. Kipshidze, L. Shterengas, D. Westerfeld, W. L. Sarney, and S. Svensso, Appl. Phys. Lett. 102, 111108 (2013).

    Article  ADS  Google Scholar 

  4. 4

    S. V. Ivanov, M. Yu. Chernov, V. A. Solov’ev, P. N. Brunkov, D. D. Firsov, and O. S. Komkov, Prog. Cryst. Growth Charact. Mater. 65, 20 (2019).

    Article  Google Scholar 

  5. 5

    V. A. Kulbachinskii, L. N. Oveshnikov, R. A. Lunin, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, S. S. Pushkarev, and P. P. Maltsev, Semiconductors 49, 921 (2015).

    Article  ADS  Google Scholar 

  6. 6

    D. J. Dunstan, P. Kidd, L. K. Howard, and R. H. Dixon, Appl. Phys. Lett. 59, 3390 (1991).

    Article  ADS  Google Scholar 

  7. 7

    D. J. Dunstan, J. Mater. Sci. Mater. Electron. 8, 337 (1997).

    Article  Google Scholar 

  8. 8

    H. Choi, Y. Jeong, J. Cho, and M. H. Jeon, J. Cryst. Growth 311, 1091 (2009).

    Article  ADS  Google Scholar 

  9. 9

    M. Yu. Chernov, V. A. Solov’ev, O. S. Komkov, D. D. Firsov, B. Ya. Meltser, M. A. Yagovkina, M. V. Baidakova, P. S. Kop’ev, and S. V. Ivanov, Appl. Phys. Express 10, 121201 (2017).

    Article  ADS  Google Scholar 

  10. 10

    B. Bertoli, E. N. Suarez, J. E. Ayers, and F. C. Jain, J. Appl. Phys. 106, 073519 (2009).

    Article  ADS  Google Scholar 

  11. 11

    S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (Wiley–Blackwell, 2009).

    Google Scholar 

  12. 12

    E. A. Fitzgerald, Mater. Sci. Rep. 7, 87 (1991).

    Article  Google Scholar 

  13. 13

    J. Zou, D. J. H. Cockayne, and B. F. Usher, J. Appl. Phys. 73, 619 (1993).

    Article  ADS  Google Scholar 

  14. 14

    I. N. Trunkin, M. Yu. Presniakov, and A. L. Vasiliev, Crystallogr. Rep. 62, 265 (2017).

    Article  ADS  Google Scholar 

  15. 15

    F. Capotondi, G. Biasiol, D. Ercolani, V. Grillo, E. Carlino, F. Romanato, and L. Sorba, Thin Solid Films 484, 400 (2005).

    Article  ADS  Google Scholar 

  16. 16

    V. A. Solov’ev, M. Yu. Chernov, A. A. Sitnikova, P. N. Brunkov, B. Ya. Meltser, and S. V. Ivanov, Semiconductors 52, 120 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 18-02-00950.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. B. Pobat.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pobat, D.B., Solov’ev, V.A., Chernov, M.Y. et al. Distribution of Misfit Dislocations and Elastic Mechanical Stresses in Metamorphic Buffer InAlAs Layers of Various Constructions. Phys. Solid State 63, 84–89 (2021). https://doi.org/10.1134/S1063783421010170

Download citation

Keywords:

  • misfit dislocations
  • elastic stresses
  • metamorphic heterostructures
  • InAlAs/GaAs
  • large lattice misfit