Dynamics of the Surface Morphology of a Tungsten Foil under Load


The dynamics of changes in the surface morphology of recrystallized tungsten foil under the action of uniaxial tension was studied in situ by the methods of low-energy electron diffraction, electron Auger spectroscopy, atomic force microscopy, scanning electron microscopy, and energy dispersive scattering. It was established that, before the rupture of the sample, the multifractality–monofractality transition consists of several stages: the narrowing of the multifractal spectra of the singularities of the surface, the rotation of the structural blocks of the dominant (112) tungsten face, and the transition of the lattice of the dominant face into a diffractive-disordered state.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1

    V. P. Alekhin and O. V. Alekhin, Physical Laws of Deformation of Surface Layers of Materials (MGIU, Moscow, 2011) [in Russian].

    Google Scholar 

  2. 2

    Yu. I. Golovin, Phys. Solid State 50, 2205 (2008).

    ADS  Article  Google Scholar 

  3. 3

    D. V. Lychagin and E. A. Alfyorova, Phys. Solid State 57, 2034 (2015).

    ADS  Article  Google Scholar 

  4. 4

    A. Stwertka, A Guide to the Elements (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  5. 5

    V. I. Savenko, Yu. P. Toporov, V. V. Chernyshev, and A. I. Malkin, Phys. Met. Metallogr. 118, 1066 (2017).

    ADS  Article  Google Scholar 

  6. 6

    C. Panigrahy, A. Garcia-Pedrero, A. Seal, D. Rodríguez-Esparragón, N. Kumar Mahato, and C. Gonzalo-Martín, Entropy 19, 534 (2017).

    ADS  Article  Google Scholar 

  7. 7

    F. Wang, Q. Fan, and H. Eugene Stanley, Phys Rev. E 93, 042213 (2016).

    ADS  Article  Google Scholar 

  8. 8

    S. Tălu, S. Stach, T. Ghodselahi, A. Ghaderi, S. Solaymani, A. Boochani, and Ż. Garczyk, J. Phys. Chem. B 119, 5662 (2015).

    Article  Google Scholar 

  9. 9

    S. Talu, S. Stach, S. Valedbag, R. Bavadi, S. M. Elani, and M. Talu, Mater. Sci. Poland 33, 541 (2015).

    ADS  Article  Google Scholar 

  10. 10

    R. P. Yadav, U. B. Singh, A. K. Mittal, and S. Dwivedi, Appl. Phys. A 117, 2159 (2014).

    ADS  Article  Google Scholar 

  11. 11

    L. Chen, J. L. Fan, and H. R. Gong, J. Nanopart. Res. 19, 118 (2017).

    ADS  Article  Google Scholar 

  12. 12

    M. Antunes, C. A. Perottoni, D. Gouvea, G. Machado, and J. E. Zorzi, J. Nanopart. Res. 20, 25 (2018).

    ADS  Article  Google Scholar 

  13. 13

    S. Bigl, S. Wurster, M. J. Cordill, and D. Kiener, Thin Solid Films 612, 153 (2016).

    ADS  Article  Google Scholar 

  14. 14

    V. E. Korsukov, P. N. Butenko, A. G. Kadomtsev, M. M. Korsukova, V. S. Levitskii, I. A. Nyapshaev, and B. A. Obidov, Nanosyst.: Phys. Chem. Math. 9, 58 (2018).

    Google Scholar 

  15. 15

    V. E. Korsukov, S. A. Knyazev, P. N. Butenko, V. L. Gilyarov, M. M. Korsukova, I. A. Nyapshaev, and B. A. Obidov, Phys. Solid State 59, 319 (2017).

    ADS  Article  Google Scholar 

  16. 16

    V. E. Korsukov, S. A. Knyazev, A. V. Ankudinov, M. M. Korsukova, and B. A. Obidov, Tech. Phys. Lett. 40, 249 (2014).

    ADS  Article  Google Scholar 

  17. 17

    V. L. Hilarov, V. E. Korsukov, P. N. Butenko, and V. N. Svetlov, Phys. Solid State 46, 1868 (2004).

    ADS  Article  Google Scholar 

  18. 18

    V. E. Korsukov, S. A. Knyazev, A. L. Buinov, M. M. Korsukova, S. A. Nemov, and B. A. Obidov, Tech. Phys. Lett. 39, 384 (2013).

    ADS  Article  Google Scholar 

  19. 19

    V. E. Korsukov, V. L. Gilyarov, M. M. Korsukova, I. V. Gilyarov, and B. A. Obidov, in Proceedings of the 23rd Peterburg Readings on Strength Problems (St. Petersburg, 2008).

  20. 20

    M. Nasehnejad, M. Cholipour Shahraki, and G. Nabiyouni, Appl. Surf. Sci. 389, 735 (2016).

    ADS  Article  Google Scholar 

  21. 21

    O. V. Klyavin, N. N. Aruev, L. I. Derkachenko, Yu. M. Chernov, and V. V. Shpeizman, Tech. Phys. 62, 1758 (2017).

    Article  Google Scholar 

  22. 22

    O. V. Klyavin, N. N. Aruev, L. I. Derkachenko, V. Yu. Fedorov, Yu. M. Chernov, and V. V. Shpeizman, Phys. Solid State 58, 711 (2016).

    ADS  Article  Google Scholar 

Download references


This work was supported the Russian Foundation for Basic Research, project no. 18-08-00360.

Author information



Corresponding author

Correspondence to V. E. Korsukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korsukov, V.E., Ankudinov, A.V., Betekhtin, V.I. et al. Dynamics of the Surface Morphology of a Tungsten Foil under Load. Phys. Solid State 62, 2249–2257 (2020). https://doi.org/10.1134/S1063783420120173

Download citation


  • tungsten
  • atomic structure
  • surface relief
  • mechanical stretching
  • rupture precursors