Skip to main content
Log in

Pyroelectric and Electrocaloric Effects in PMN–PbTiO3–SrTiO3 Solid Solutions

  • FERROELECTRICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The pyroelectric and electrocaloric effects and also the dielectric properties in a biasing electric field have been studied in lead–strontium magnoniobate–titanate solid solutions. The specific features of the temperature and field dependences of the pyroelectric and electrocaloric effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. B. Noheda, Curr. Opin. Solid State Mater. Sci. 6, 27 (2002).

    Article  ADS  Google Scholar 

  2. K. S. Aleksandrov, B. P. Sorokin, and S. I. Burkov, Effective Piezoelectric Crystals for Acoustoelectronics, Piezotechnics and Sensors (Sib. Otdel. RAN, Novosibirsk, 2008), Vol. 2 [in Russian].

    Google Scholar 

  3. S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).

    Article  ADS  Google Scholar 

  4. S. E. Aleksandrov, G. A. Gavrilov, A. A. Kapralov, E. P. Smirnova, G. Yu. Sotnikova, and A. V. Sotnikov, Tech. Phys. 49, 1176 (2004).

    Article  Google Scholar 

  5. Y. Hagberg, A. Uusimäki, and H. Jantunen, Appl. Phys. Lett. 92, 132909 (2008).

    Article  ADS  Google Scholar 

  6. S. W. Choi, R. T. R. Shrout, S. J. Jang, and A. S. Bhalla, Ferroelectrics 100, 99 (1989).

    Article  Google Scholar 

  7. D. J. Taylor, D. Damianovich, and A. S. Bhalla, Ferroelectrics 118, 143 (1991).

    Article  Google Scholar 

  8. J. R. Giniewicz, A. S. Bhalla, and L. E. Cross, Ferroelectrics 118, 157 (1991).

    Article  Google Scholar 

  9. E. P. Smirnova, S. E. Aleksandrov, K. A. Sotnikov, A. A. Kapralov, and A. V. Sotnikov, Phys. Solid State 45, 1305 (2003).

    Article  ADS  Google Scholar 

  10. S. I. Raevskaya, Yu. N. Zakharov, A. G. Lutokhin, A. S. Emelyanov, I. P. Raevski, M. S. Panchelyuga, V. V. Titov, and S. A. Prosandeev, Appl. Phys. Lett. 93, 042903 (2008).

    Article  ADS  Google Scholar 

  11. B. Rožič, B. Malič, H. Uršič, J. Holc, M. Kozec, and Z. Kutnjak, Ferroelectrics 42, 103 (2011).

    Article  Google Scholar 

  12. D. Guyomar, G. Sebald, B. Guiffard, and L. Seveyrat, J. Phys. D 39, 4491 (2006).

    Article  ADS  Google Scholar 

  13. G. Sebald, S. Pruvost, L. Seveyrat, L. Lebrun, D. Guyomar, and B. Guiffard, J. Eur. Ceram. Soc. 27, 4021 (2007).

    Article  Google Scholar 

  14. A. Sternberg, L. Shebanovs, V. Zaulis, and K. Kudzins, Ferroelectrics 286, 327 (2003).

    Article  Google Scholar 

  15. D. Q. Xiao, Y. C. Wang, R. L. Zhang, S. Q. Peng, J. G. Zhu, and B. Yang, Mater. Chem. Phys. 57, 182 (1998).

    Article  Google Scholar 

  16. L. Shebanovs, K. Borman, W. N. Lawless, and A. Kalvane, Ferroelectrics 273, 137 (2002).

    Article  Google Scholar 

  17. L. Shaobo and L. Yanqiu, Mater. Sci. Eng. B 113, 46 (2004).

    Article  Google Scholar 

  18. Y. Bai, D. Wei, and L.-J. Qiao, Appl. Phys. Lett. 107, 192904 (2015).

    Article  ADS  Google Scholar 

  19. K. A. Müller and H. Burkard, Phys. Rev. B 19, 3593 (1979).

    Article  ADS  Google Scholar 

  20. W. Zhong and D. Vanderbilt, Phys. Rev. B 53, 5047 (1996).

    Article  ADS  Google Scholar 

  21. Z. Cao, G. Li, J. Zeng, L. Zheng, and Q. Yin, J. Phys. D 43, 015405 (2010).

    Article  ADS  Google Scholar 

  22. S. L. Swartz and T. R. Shrout, Mater. Res. Bull. 17, 1245 (1982).

    Article  Google Scholar 

  23. N. Setter and L. E. Cross, J. Mater. Sci. 15, 2478 (1980).

    Article  ADS  Google Scholar 

  24. S. B. Lang and D. K. Das-Gupta, Ferroelectrics 39, 1249 (1981).

    Article  Google Scholar 

  25. M. Sanlialp, V. V. Shvartsman, R. Faye, M. O. Karabasov, C. Molin, S. Gebhardt, E. Defay, and D. C. Lupascu, Rev. Sci. Instrum. 89, 034903 (2018).

    Article  ADS  Google Scholar 

  26. E. P. Smirnova, G. Yu. Sotnikova, N. V. Zaitseva, A. A. Kapralov, G. A. Gavrilov, and A. V. Sotnikov, Phys. Solid State 60, 2006 (2018).

    Article  ADS  Google Scholar 

  27. E. P. Smirnova, G. Yu. Sotnikova, N. V. Zaitseva, A. A. Kapralov, and G. A. Gavrilov, Tech. Phys. Lett. 44, 60 (2018).

    Article  ADS  Google Scholar 

  28. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Univ. Press, 1965).

    MATH  Google Scholar 

  29. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectric and Related Materials (Clarendon, O-xford, 1977).

    Google Scholar 

  30. M. V. Gorev, I. N. Flerov, P. H. Sciau, V. S. Bondarev, and A. Geddo Lehman, Ferroelectrics 307, 127 (2004).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-00394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Smirnova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, E.P., Sotnikova, G.Y., Zaitseva, N.V. et al. Pyroelectric and Electrocaloric Effects in PMN–PbTiO3–SrTiO3 Solid Solutions. Phys. Solid State 61, 1766–1771 (2019). https://doi.org/10.1134/S1063783419100342

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419100342

Keywords:

Navigation