Skip to main content
Log in

Traps in the Nanocomposite Layer of Silicon–Silicon Dioxide and Their Effect on the Luminescent Properties

  • DIELECTRICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The traps of charge carriers in thermal films of silicon dioxide and silicon dioxide with a nanocomposite layer consisting of silicon oxide and silicon nanocrystallites have been studied using the methods of Kelvin-probe microscopy and cathode-luminescence. Based on experimental studies, the presence of electrons and holes in the trap samples is established. The effect of the charge state of electron traps on the luminescent properties of films is demonstrated. It is shown that the number of traps in nanocomposite layers is greater than in thermal oxides, but their activation energies are close in their values. This suggests that the nature of the traps in such layers is the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. Kumar, Nanosilicon (Elsevier, Amsterdam, 2007), p. 361.

    Google Scholar 

  2. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996).

    Article  ADS  Google Scholar 

  3. S. K. Lai, IBM J. Res. Dev. 52, 529 (2008).

    Article  Google Scholar 

  4. L. Khriachtchev, Silicon Nanophotonics: Basic Principles, Current Status and Perspectives (Pan Stanford, Singapore, 2008).

    Book  Google Scholar 

  5. G. Conibeera, M. Greena, R. Corkisha, Y. Choa, E.‑C. Chob, C.-W. Jianga, T. Fangsuwannaraka, E. Pinka, Y. Huanga, T. Puzzera, T. Trupkea, B. Richardsc, A. Shalava, and K.-I. Lin, Thin Solid Films 511–512, 654 (2006).

    Article  Google Scholar 

  6. E. V. Ivanova, A. A. Sitnikova, O. V. Aleksandrov, and M. V. Zamoryanskaya, Semiconductors 50, 791 (2016).

    Article  ADS  Google Scholar 

  7. E. V. Ivanova, P. A. Dementev, A. A. Sitnikova, O. V. Aleksandrov, and M. V. Zamoryanskaya, J. Electron. Mater. 47, 3969 (2018).

    Article  ADS  Google Scholar 

  8. E. V. Ivanova and M. V. Zamoryanskaya, Phys. Solid State 58, 1962 (2016).

    Article  ADS  Google Scholar 

  9. D. Lehninger, P. Seidel, M. Geyer, F. Schneider, V. Klemm, D. Rafaja, J. von Borany, and J. Heitmann, Appl. Phys. Lett. 106, 023116 (2015).

    Article  ADS  Google Scholar 

  10. E. Yurchuk, J. Muller, S. Muller, J. Paul, M. Pesic, R. van Bentum, U. Schroeder, and T. Mikolajick, IEEE Trans. Electron Dev. 63, 3501 (2016).

    Article  ADS  Google Scholar 

  11. M. S. Dunaevskiy, P. A. Alekseev, P. Girard, E. Lahderanta, A. Lashkul, and A. N. Titkov, J. Appl. Phys. 110, 084304 (2011).

    Article  ADS  Google Scholar 

  12. Ze-Qun Cui, Shun Wang, Jian-Mei Chen, Xu Gao, Bin Dong, Li-Feng Chi, and Sui-Dong Wang, Appl. Phys. Lett. 106, 123303 (2015).

    Article  ADS  Google Scholar 

  13. P. A. Dement’ev, P. A. Alekseev, M. S. Dunaevskii, and A. N. Aleshin, J. Phys.: Conf. Ser. 661, 012029 (2015).

    Google Scholar 

  14. K. N. Orekhova, R. Tomala, D. Hreniak, W. Strek, and M. V. Zamoryanskaya, Opt. Mater. 74 (S1), 170 (2016).

    Article  ADS  Google Scholar 

  15. M. V. Zamoryanskaya, S. G. Konnikov, and A. N. Zamoryanskii, Instrum. Exp. Tech. 47, 477 (2004).

    Article  Google Scholar 

  16. J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, and E. Lifshin, Scanning Electron Microscopy and X‑Ray Microanalysis (Academic, Plenum, New York, 2003), p. 689.

    Book  Google Scholar 

  17. M. M. Perlman, T. J. Sonnonstine, and J. A. St. Pierre, J. Appl. Phys. 47, 5016 (1976).

    Article  ADS  Google Scholar 

  18. L. N. Skuja and A. R. Silin, Phys. Status Solidi A 70, 43 (1982).

    Article  ADS  Google Scholar 

  19. H.-J. Fitting, T. Barfels, A. N. Trukhin, B. Schmidt, A. Gulans, and A. von Czarnovski, J. Non-Cryst. Solids 303, 218 (2002).

    Article  ADS  Google Scholar 

  20. E. V. Kolesnikova (Ivanova) and M. V. Zamoryanskaya, Phys. B: Condens. Matter 404, 4653 (2009).

    Article  ADS  Google Scholar 

  21. O. V. Aleksandrov and N. N. Afonin, Tech. Phys. 48, 580 (2003).

    Article  Google Scholar 

  22. O. V. Aleksandrov and N. N. Afonin, Semiconductors 32, 15 (1998).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to O.V. Aleksandrov (St. Petersburg Electrotechnical University “LETI”) for providing samples and assistance in calculating the doping of films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Ivanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dement’ev, P.A., Ivanova, E.V. & Zamoryanskaya, M.V. Traps in the Nanocomposite Layer of Silicon–Silicon Dioxide and Their Effect on the Luminescent Properties. Phys. Solid State 61, 1394–1400 (2019). https://doi.org/10.1134/S1063783419080110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419080110

Keywords:

Navigation