Skip to main content
Log in

Effect of Annealing in a Ferromagnetic State on the Structure of an Fe–18 at % Ga Alloy

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The atomic structure of the iron–gallium alloy containing 18 at % Ga has been studied by X-ray diffraction. The samples were annealed in the paramagnetic (T > TC) and ferromagnetic (T < TC) state. In the first case, the structural state was fixed by quenching from the annealing temperature into water; in the second case, the structural state was obtained by slow cooling. The structural studies of the single-crystal samples were conducted on a four-circle X-ray diffractometer at room temperature. From the X-ray diffraction data, it follows that the alloy, independently on the heat treatment, contains B2 clusters, i.e., locally ordered regions with the CsCl-type structure observed in alloys of iron with silicon (to 10 at % Si) and aluminum (7 at % Al) before. In addition to the B2‑clusters, regions with the D03 short-range order are observed in the quenched sample; the sizes of these regions significantly increases after annealing in the ferromagnetic state, i.e., a long-range order forms. The relation of the fine structural changes in the alloy due to various heat treatments with its magnetoelastic and magnetostriction properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. R. Cullen, A. E. Clark, M. Wun-Fogle, J. B. Restor, and T. A. Lograsso, J. Magn. Magn. Mater. 226–230, 948 (2001). doi 10.1016/S0304-8853(00)00612-0

    Article  Google Scholar 

  2. A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu, and R. A. Taylor, J. Appl. Phys. 93, 8621 (2003). doi 10.1063/1.1540130

    Article  ADS  Google Scholar 

  3. O. Ikeda, R. Kainuma, I. Ohnuma, K. Fukamichi, and K. Ishida, J. Alloys Compd. 347, 198 (2002). doi 10.1016/S0925-8388(02)00791-0

    Article  Google Scholar 

  4. M. V. Petrik, O. I. Gorbatov, and Yu. N. Gornostyrev, JETP Lett. 98, 809 (2013). doi 10.7868/S0370274X13240107

    Article  ADS  Google Scholar 

  5. R. Wu, J. Appl. Phys. 91, 7358 (2002). doi 10.1063/1.1450791

    Article  ADS  Google Scholar 

  6. J. Cullen, P. Zhao, and M. Wuttig, J. Appl. Phys. 101, 123922 (2007). doi 10.1063/1.2749471

    Article  ADS  Google Scholar 

  7. J. Boisse, H. Zapolsky, and A. G. Khachaturyan, Acta Mater. 59, 2656 (2011). doi 10.1016/j.Actamat.2011.01.002

    Article  Google Scholar 

  8. T. A. Lograsso and E. M. Summers, Mater. Sci. Eng. A 416, 240 (2006). doi 10.1016/j.msea.2005.10.035

    Article  Google Scholar 

  9. M. Huang and T. A. Lograsso, Appl. Phys. Lett. 95, 171907 (2009). doi 10.1063/1.3254249

    Article  ADS  Google Scholar 

  10. Yu. P. Chernenkov, N. V. Ershov, V. A. Lukshina, V. I. Fedorov, and B. K. Sokolov, Phys. B (Amsterdam, Neth.) 396, 220 (2007). doi 10.1016/j.physb.2007.04.008

  11. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, Phys. Solid State 51, 441 (2009). doi 10.1134/S1063783409030019

    Article  ADS  Google Scholar 

  12. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, Phys. Solid State 54, 1935 (2012). doi 10.1134/S1063783412090107

    Article  ADS  Google Scholar 

  13. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and O. P. Smirnov, Phys. Solid State 60, 1661 (2018).

    Article  ADS  Google Scholar 

  14. Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, Phys. Met. Metallogr. 100, 235 (2005).

    Google Scholar 

  15. C. J. Quinn, P. J. Grundy, and N. J. Mellors, J. Magn. Magn. Mater. 361, 74 (2014). doi 10.1016/j.JMMM.2014.02.004

    Article  ADS  Google Scholar 

  16. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction (Prentice-Hall, New York, 2001).

    Google Scholar 

  17. Th. Proffen and R. B. Neder, J. Appl. Crystallogr. 30, 171 (1997). doi 10.1107/S002188989600934X

    Article  Google Scholar 

  18. O. I. Gorbatov, A. R. Kuznetsov, Yu. N. Gornostyrev, A. V. Ruban, N. V. Ershov, V. A. Lukshina, Yu. P. Chernenkov, and V. I. Fedorov, J. Exp. Theor. Phys. 112, 848 (2011). doi 10.1134/S1063776111040066

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out in the framework of the state task (the theme “Magnit” No. AAAA-A18-118020290129-5) and was supported by the program of the Ural Branch of the Russian Academy of Sciences (project no. 18-10-2-5) and the Russian Foundation for Basic Research (project no. 18-02-00391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ershov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernenkov, Y.P., Ershov, N.V. & Lukshina, V.A. Effect of Annealing in a Ferromagnetic State on the Structure of an Fe–18 at % Ga Alloy. Phys. Solid State 60, 2370–2380 (2018). https://doi.org/10.1134/S1063783419010050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419010050

Navigation