Skip to main content
Log in

Friction Force and Radiative Heat Exchange in a System of Two Parallel Plates in Relative Motion: Corollaries of the Levine–Polevoi–Rytov Theory

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

It has been shown that the fundamental results obtained in the works by Levine–Polevoi–Rytov (1980) and Rytov (1990) adequately describe the rate of radiative heat exchange and frictional force in a system of two thick parallel plates in relative motion, in full agreement with the results obtained by other authors later. A numerically calculated friction force for Drude metals turns out to be higher by a factor of 107 than the early result obtained by Polevoi. In addition, the friction force significantly increases with increasing the conductivity of the plates or increasing the relaxation time of electrons with decreasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Fluctuations in Electrodynamics (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  2. S. M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Akad. Nauk SSSR, Moscow, 1953) [in Russian].

    Google Scholar 

  3. M. L. Levin, V. G. Polevoi, and S. M. Rytov, Sov. Phys. JETP 52, 1054 (1980).

    ADS  Google Scholar 

  4. V. G. Polevoi, Heat Exchange by Fluctuation Electromagnetic Field (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  5. V. G. Polevoi, Sov. Phys. JETP 71, 1119 (1990).

    Google Scholar 

  6. D. Polder and M. van Hove, Phys. Rev. B 4, 3303 (1971).

    Article  ADS  Google Scholar 

  7. J. J. Loomis and H. J. Maris, Phys. Rev. B 50, 18517 (1994).

    Article  ADS  Google Scholar 

  8. K. Park and Z. Zhang, Front. Heat Mass Transfer 4, 013001 (2013).

    Google Scholar 

  9. V. B. Bezerra, G. Bimonte, G. L. Klimchitskaya, V. M. Mostepanenko, and C. Romero, Eur. Phys. J. C 52, 701 (2007).

    Article  ADS  Google Scholar 

  10. A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).

    Article  ADS  Google Scholar 

  11. B. N. J. Persson and Zhang Zhenyu, Phys. Rev. B 57, 7327 (1998).

    Article  ADS  Google Scholar 

  12. A. I. Volokitin and B. N. J. Persson, J. Phys. C 11, 345 (1999).

    Google Scholar 

  13. J. B. Pendry, J. Phys. C 9, 10301 (1997).

    Google Scholar 

  14. V. E. Teodorovich, Proc. R. Soc. London, Ser. A 362, 71 (1978).

    Article  ADS  Google Scholar 

  15. T. G. Philbin and U. Leonhardt, New J. Phys. 11, 03035 (2009); arXiv: 094.2148.

  16. A. I. Volokitin and B. N. J. Persson, New J. Phys. 11, 033035 (2009).

    Article  Google Scholar 

  17. J. B. Pendry, New J. Phys. 12, 033028 (2010).

    Article  ADS  Google Scholar 

  18. J. S. Hoye and I. Brevik, Entropy 15, 3045 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  19. K. A. Milton, J. S. Hoye, and I. Brevik, Symmetry 8, 29 (2016).

    Article  Google Scholar 

  20. G. V. Dedkov and A. A. Kyasov, Phys. Usp. 60, 559 (2017).

    Article  ADS  Google Scholar 

  21. K. A. Milton, R. Guerodt, G. L. Ingold, A. Lambrecht, and S. Reynaud, J. Phys.: Condens. Matter 27, 214003 (2015).

    ADS  Google Scholar 

  22. M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the Casimir Effect (Oxford Univ. Press, Oxford, UK, 2009).

    Book  MATH  Google Scholar 

  23. C.-C. Chang, A. A. Banishev, R. Castillo-Garza, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mo-hideen, Phys. Rev. B 85, 165443 (2012).

    Article  ADS  Google Scholar 

  24. A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. B 88, 155410 (2013).

    Article  ADS  Google Scholar 

  25. B. C. Stipe, H. J. Mamin, T. D. Stowe, Y. W. Kenny, and D. Rugar, Phys. Lett. 87, 096801 (2001).

    Article  Google Scholar 

  26. B. V. Derjaguin, Kolloid Z. 69, 155 (1934).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. V. Dedkov or A. A. Kyasov.

Additional information

Translated by G. Dedkov

APPENDIX

APPENDIX

When calculating integrals in (30), (34), (38), and (40) with Drude function (44), it is expedient to write \({{\varepsilon }_{D}}(\omega )\) in the form

$${{\varepsilon }_{D}}(\omega ) = \left| \varepsilon \right|\exp (i\tilde {\phi }),$$
((A1))
$$\left| \varepsilon \right| = {{\left[ {{{{\left( {\frac{{1 + \kappa _{w}^{2}{{x}^{2}} - \kappa _{p}^{2}}}{{1 + \kappa _{w}^{2}{{x}^{2}}}}} \right)}}^{2}} + \frac{{{{{\tilde {\lambda }}}^{2}}}}{{{{x}^{2}}{{{(1 + \kappa _{w}^{2}{{x}^{2}})}}^{2}}}}} \right]}^{{1/2}}},$$
((A2))
$$\tilde {\phi } = \arctan \left( {\frac{{\kappa _{p}^{2}}}{{{{\kappa }_{w}}x(1 + \kappa _{w}^{2}{{x}^{2}} - \kappa _{p}^{2})}}} \right),$$
((A3))

where \(\tilde {\lambda }\) = \(\kappa _{p}^{2}{\text{/}}{{\kappa }_{w}}\). Accordingly, formulas (31), (33), (35), (37)(41) for quantities U1, 2, and ϕ1, 2 reduce to

$${{U}_{1}} = {{\left[ {{{{\left( {{{y}^{2}} + \frac{{\lambda _{a}^{2}\kappa _{p}^{2}{{x}^{2}}}}{{1 + k_{w}^{2}{{x}^{2}}}}} \right)}}^{2}} + \frac{{{{\lambda }^{2}}{{x}^{2}}}}{{{{{(1 + \kappa _{w}^{2}{{x}^{2}})}}^{2}}}}} \right]}^{{1/4}}},$$
((31a))
$${{\phi }_{1}} = - 0.5\arctan \left[ {\frac{{\lambda x}}{{{{y}^{2}}(1 + \kappa _{w}^{2}{{x}^{2}}) + \lambda _{a}^{2}\kappa _{p}^{2}{{x}^{2}}}}} \right],$$
((33a))
$${{U}_{2}} = {{\left[ {{{{\left( { - {{y}^{2}} + \frac{{\kappa _{p}^{2}{{x}^{2}}}}{{1 + \kappa _{w}^{2}{{x}^{2}}}}} \right)}}^{2}} + \frac{{{{{\tilde {\lambda }}}^{2}}{{x}^{2}}}}{{{{{(1 + \kappa _{w}^{2}{{x}^{2}})}}^{2}}}}} \right]}^{{1/4}}},$$
((35a))
$${{\phi }_{2}} = - 0.5\arctan \left[ {\frac{{\tilde {\lambda }x}}{{\kappa _{p}^{2}{{x}^{2}} - {{y}^{2}}(1 + \kappa _{w}^{2}{{x}^{2}})}}} \right],$$
((37a))
$${{I}_{{\varepsilon 1}}} = \int\limits_0^\infty {dy{{y}^{3}}({{y}^{2}} + \lambda _{a}^{2}{{x}^{2}})U_{1}^{2}{{{\left| \varepsilon \right|}}^{{ - 2}}}{{{\left| {{{Q}_{{\varepsilon 1}}}} \right|}}^{{ - 2}}}{{{\sin }}^{2}}({{\phi }_{1}} - \tilde {\phi }),} $$
((38a))
$$\begin{gathered} {{\left| {{{Q}_{{\varepsilon 1}}}} \right|}^{2}} = {\text{|(}}{{y}^{2}} + U_{1}^{2}{{\left| \varepsilon \right|}^{{ - 2}}}\exp (2i({{\phi }_{1}} - \tilde {\phi })))\sinh (y) \\ + \;2y{{U}_{1}}{{\left| \varepsilon \right|}^{{ - 1}}}\exp (i({{\phi }_{1}} - \tilde {\phi })\cosh (y{\text{))}}{{{\text{|}}}^{2}}, \\ \end{gathered} $$
((39a))
$${{I}_{{\varepsilon 2}}} = \int\limits_0^x {dy{{y}^{3}}({{x}^{2}} - {{y}^{2}}){{U}_{2}}{{{\left| {{{Q}_{{\varepsilon 2}}}} \right|}}^{{ - 2}}}{{{\left| \varepsilon \right|}}^{{ - 2}}}{{{\sin }}^{2}}({{\phi }_{2}} - \tilde {\phi }),} $$
((40a))
$$\begin{gathered} {{\left| {{{Q}_{{\varepsilon 2}}}} \right|}^{2}} = {\text{|(}}{{y}^{2}} + U_{1}^{2}{{\left| \varepsilon \right|}^{{ - 2}}}\exp (2i({{\phi }_{1}} - \tilde {\phi })))\sin ({{\lambda }_{a}}y) \\ - \;2y{{U}_{1}}{{\left| \varepsilon \right|}^{{ - 1}}}\exp (i({{\phi }_{2}} - \tilde {\phi })\cos ({{\lambda }_{a}}y{\text{))}}{{{\text{|}}}^{2}}, \\ \end{gathered} $$
((41a))

where λ = \(\kappa _{p}^{2}\lambda _{a}^{2}{\text{/}}{{\kappa }_{w}}\). Expressions (32), (34), (36), and (42) should be used taking into account modifications made for U1, 2 and ϕ1, 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedkov, G.V., Kyasov, A.A. Friction Force and Radiative Heat Exchange in a System of Two Parallel Plates in Relative Motion: Corollaries of the Levine–Polevoi–Rytov Theory. Phys. Solid State 60, 2349–2357 (2018). https://doi.org/10.1134/S1063783418120119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418120119

Navigation