Skip to main content
Log in

Electrical and Magnetic Properties of Pb and In Nanofilaments in Asbestos near the Superconducting Transition

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Bulk nanocomposites based on superconducting metals Pb and In embedded into matrices of natural chrysotile asbestos with the nanotube internal diameter d ~ 6 nm have been fabricated and studied. The low-temperature electrical and magnetic properties of the nanocomposites demonstrate the superconducting transition with the transition critical temperature Tc ≈ (7.18 ± 0.02) K for the Pb–asbestos nanocomposite (this temperature is close to Tc bulk = 7.196 K for bulk Pb). The electrical measurements show that In nanofilaments in asbestos have Tc ~ 3.5–3.6 K that is higher than Tc bulk = 3.41 K for bulk In. It is shown that the temperature smearing of the superconducting transition in the temperature dependences of the resistance R(T) ΔT ≈ 0.06 K for the Pb–asbestos and ΔT ≈ 1.8 K for the In–asbestos are adequately described by the fluctuation Aslamazov–Larkin and Langer–Ambegaokar theories. The resistive measurements show that the critical magnetic fields of the nanofilaments extrapolated to T = 0 K are Hc(0) ~ 47 kOe for Pb in asbestos and Hc(0) ~ 1.5 kOe for In in asbestos; these values are significantly higher than the values for the bulk materials (H\(H_{\rm{c}}^{\rm{bulk}}\) = 803 Oe for Pb and \(H_{\rm{c}}^{\rm{bulk}}\) = 285 Oe for In). The results of the electrical measurements for Pb‒asbestos and In–asbestos agree with the data for the magnetic-field dependences of the magnetic moment in these nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Kumzerov and S. Vakrushev, in Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (Am. Scientific, 2004), Vol.7.

  2. D. V. Shamshur, A. V. Chernyaev, A. V. Fokin, and S. G. Romanov, Phys. Solid State 47, 2005 (2005).

    Article  ADS  Google Scholar 

  3. B. W. Roberts, J. Phys. Chem. Ref. Data 5, 581 (1976).

    Article  ADS  Google Scholar 

  4. Yu. A. Kumzerov, Nanostructured Films and Coatings, NATO Sci., Ser. 3: High Technology, Ed. by G.M. Chow, I.A. Ovid’ko, and T. Tsakalakos (Dordrecht, Boston, 2000), Vol. 78, p.63.

    Article  Google Scholar 

  5. K. Yu. Arutyunov, D. S. Golubev, and A. D. Zaikin, Phys. Rep. 464, 1 (2006).

    Article  ADS  Google Scholar 

  6. P. Hohenberg, Usp. Fiz. Nauk 102, 239 (1970).

    Article  Google Scholar 

  7. Yu. A. Kumzerov and A. A. Naberezhnov, Low Temp. Phys. 42, 1028 (2016).

    Article  ADS  Google Scholar 

  8. A. V. Chernyaev, D. V. Shamshur, A. V. Fokin, A. E. Kalmykov, Yu. A. Kumzerov, L. M. Sorokin, R. V. Parfen’ev, and A. Lashkul, Phys. Solid State 58, 454 (2016).

    Article  ADS  Google Scholar 

  9. A. P. Karnaukhov, Adsorption. Texture of Dispersed Porous Materials (Nauka, Novosibirsk, 1999), p. 346 [in Russian].

    Google Scholar 

  10. L. G. Aslamazov and A. I. Larkin, Sov. Phys. Solid State 10, 875 (1968).

    Google Scholar 

  11. J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1967).

    Article  ADS  Google Scholar 

  12. Tables of Physical Quantities, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976), p. 306 [in Russian].

  13. V. V. Shmidt, Introduction to Superconductor Physics (Nauka, Moscow, 1982), pp. 6, 33, 194 [in Russian].

    Google Scholar 

  14. A. E. Aliev, S. B. Lee, A. A. Zakhidov, and R. H. Baughman, Phys. C (Amsterdam, Neth.) 15, 453 (2007).

    Google Scholar 

  15. N. Yu. Mikhailin, D. V. Shamshur, R. V. Parfen’ev, V. I. Kozub, Yu. M. Gal’perin, Yu. A. Kumzerov, and A. V. Fokin, Phys. Solid State 60, 1068 (2018).

    Article  ADS  Google Scholar 

  16. A. Rose-Innes and E. Rhoderick, Introduction to Superconductivity (Pergamon, Oxford, 1988; Mir, Moscow, 1972), rus. p.23.

    Google Scholar 

  17. L. P. Gor’kov, Sov. Phys. JETP 10, 593 (1959).

    MathSciNet  Google Scholar 

  18. G. Stroink, D. Hutt, D. Lim, and R. A. Dunlap, IEEE Trans. Magn. 21, 2074 (1985).

    Article  ADS  Google Scholar 

  19. V. L. Ginzburg, Sov. Phys. JETP 7, 78 (1958).

    Google Scholar 

  20. Handbuch der Physik, Ed. by S. Flügge (Springer, Berlin, 1956), Vol. 19.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernyaev.

Additional information

Original Russian Text © A.V. Chernyaev, N.Yu. Mikhailin, D.V. Shamshur, Yu.A. Kumzerov, A.V. Fokin, A.E. Kalmykov, R.V. Parfen’ev, L.M. Sorokin, A. Lashkul, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 10, pp. 1893–1899.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyaev, A.V., Mikhailin, N.Y., Shamshur, D.V. et al. Electrical and Magnetic Properties of Pb and In Nanofilaments in Asbestos near the Superconducting Transition. Phys. Solid State 60, 1935–1941 (2018). https://doi.org/10.1134/S1063783418100050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418100050

Navigation