Skip to main content
Log in

Electric-field-induced structural and magnetic transformations in BiFeO3 multiferroics

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of an electric field on the structural changes and related transformation of the magnetic subsystem in a BiFeO3 multiferroic material has been investigated in the framework of the phenomenological model based on the Ginzburg-Landau theory. The hysteresis dependences of the electric polarization, the counter-rotation of oxygen octahedra, the magnetization, and the antiferromagnetic vector have been obtained as a function of the electric field applied along the crystallographic directions [110] and [001] of the pseudocubic structure. The model parameters are consistent with the results of the ab initio calculations of the structural and magnetic transitions in this material. It has been shown that, in the region of the existence of a spatially modulated spin state, an abrupt change in the polarization vector leads to a stepwise transformation of the antiferromagnetic structure. Within the proposed approach, the electric-field-controlled change in the spin structure of the multiferroic material is adequately described in the range of weak and strong magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, and A. Fert, Nat. Mater. 6, 296 (2007).

    Article  ADS  Google Scholar 

  2. J. P. Velev, C.-G. Duan, K. D. Belashcenko, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 98, 137201 (2007).

    Article  ADS  Google Scholar 

  3. X. Chen, A. Hochstrat, P. Borisov, and W. Kleemann, Appl. Phys. Lett. 89 (20), 202508 (2006).

    Article  ADS  Google Scholar 

  4. N. A. Spaldin, Magnetic Materials: Fundamentals and Applications, 2nd ed. (Cambridge University Press, Cambridge, 2010).

    Book  Google Scholar 

  5. G. Catalan and J. F. Scott, Adv. Mater. (Weinheim) 27, 2463 (2009).

    Article  Google Scholar 

  6. D. Lebeugle, D. Colson, A. Forget, and M. Viret, Appl. Phys. Lett. 91, 022907 (2007).

    Article  ADS  Google Scholar 

  7. A. P. Pyatakov and A. K. Zvezdin, Phys.-Usp. 55 (6), 557 (2012).

    Article  ADS  Google Scholar 

  8. C. A. F. Vaz and C. H. Ahn, in Ferroelectrics: Physical Effects, Ed. by M. Lallart (InTech, Rijeka, Croatia, 2011), Chap. 14, p. 329.

  9. Z. V. Gareeva, A. F. Popkov, S. V. Soloviov, and A. K. Zvezdin, Phys. Rev. B: Condens. Matter 87 (21), 214413 (2013).

    Article  ADS  Google Scholar 

  10. X. Ke, P. P. Zhang, S. H. Baek, J. Zarestky, W. Tian, and C. B. Eom, Phys. Rev. B: Condens. Matter 82 (13), 134448 (2010).

    Article  ADS  Google Scholar 

  11. S. Lee, W. Ratcliff II, S.-W. Cheong, and V. Kiryukhin, Appl. Phys. Lett. 92 (19), 192906 (2008).

    Article  ADS  Google Scholar 

  12. G. J. MacDougall, H. M. Christen, W. Siemons, M. D. Biegalski, J. L. Zarestky, S. Liang, E. Dagotto, and S. E. Nagler, Phys. Rev. B: Condens. Matter 85 (10), 100408 (2012).

    Article  Google Scholar 

  13. S. Lee, M. T. Fernandez-Diaz, H. Kimura, Y. Noda, D.T. Aclroja, S. Lee, J. Park, V. Kiryukhin, and S.-W. Cheong, Phys. Rev. B: Condens. Matter 88 (6), 060103 (2013).

    Article  ADS  Google Scholar 

  14. S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Nat. Mater. 9 (9), 756 (2010).

    Article  ADS  Google Scholar 

  15. S. Lee, T. Choi, W. Ratcliff II, R. Erwin, S.-W. Cheong, and V. Kiryukhin, Phys. Rev. B: Condens. Matter 78 (10), 100101 (2008).

    Article  ADS  Google Scholar 

  16. W. Ratcliff II, Z. Yamani, V. Anbusathaiah, T. R. Gao, P. A. Kienzle, H. Cao, and I. Takeuchi, Phys. Rev. B: Condens. Matter 87 (14), 140405 (2013).

    Article  ADS  Google Scholar 

  17. E. G. Maksimov, V. I. Zinenko, and N. G. Zamkova, Phys.-Usp. 47 (11), 1075 (2004).

    Article  ADS  Google Scholar 

  18. V. I. Zinenko and M. S. Pavlovskii, Phys. Solid State 51 (7), 1404 (2009).

    Article  ADS  Google Scholar 

  19. M. S. Pavlovskii, Candidate’s Dissertation (Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, 2009).

    Google Scholar 

  20. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B: Condens. Matter 71 (1), 014113 (2005).

    Article  ADS  Google Scholar 

  21. S. Lisenkov, D. Rahmedov, and L. Bellaiche, Phys. Rev. Lett. 103 (4), 047204 (2009).

    Article  ADS  Google Scholar 

  22. M. J. Haun, E. Furman, S. J. Jang, H. A. McKinstry, and L. E. Cross, J. Appl. Phys. 62 (8), 3331 (1987).

    Article  ADS  Google Scholar 

  23. A. J. Bell, J. Appl. Phys. 89 (7), 3907 (2001).

    Article  ADS  Google Scholar 

  24. V. B. Shirokov, Yu. I. Yuzyuk, and V. V. Lemanov, Phys. Solid State 51 (5), 1025 (2009).

    Article  ADS  Google Scholar 

  25. J. C. Slonczewski and H. Thomas, Phys. Rev. B: Solid State 1 (9), 3599 (1970).

    Article  ADS  Google Scholar 

  26. A. K. Zvezdin and A. A. Mukhin, JETP Lett. 89 (7), 328 (2009).

    Article  ADS  Google Scholar 

  27. A. M. Kadomtseva, Yu. F. Popov, G. P. Vorob’ev, and A. K. Zvezdin, Physica B (Amsterdam) 211 (1), 327 (1995).

    Article  ADS  Google Scholar 

  28. D. Sando, A. Agbelele, D. Rahmedov, J. Liu, P. Rovillain, C. Toulouse, I. C. Infante, A. P. Pyatakov, S. Fusil, E. Jacquet, C. Carrétéro, C. Deranlot, S. Lisenkov, D. Wang, J.-M. Le Breton, M. Cazayous, A. Sacuto, J. Juraszek, A.K. Zvezdin, L. Bellaiche, B. Dkhil, A. Barthélémy, and M. Bibes, Nat. Mater. 12 (7), 641 (2013).

    Article  ADS  Google Scholar 

  29. P. Rovillain, R. de Sousa, Y. Gallais, A. Sacuto, M. A. Méasson, D. Colson, A. Forget, M. Bibes, A. Barthélémy, and M. Cazayous, Nat. Mater. 9 (12), 975 (2010).

    Article  ADS  Google Scholar 

  30. F. Kubel and H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci. 46 (6), 498 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Solov’ev or A. K. Zvezdin.

Additional information

Original Russian Text © N.E. Kulagin, A.F. Popkov, S.V. Solov’ev, K.S. Sukmanova, A.K. Zvezdin, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 5, pp. 917–925.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulagin, N.E., Popkov, A.F., Solov’ev, S.V. et al. Electric-field-induced structural and magnetic transformations in BiFeO3 multiferroics. Phys. Solid State 57, 933–942 (2015). https://doi.org/10.1134/S1063783415050170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415050170

Keywords

Navigation