Giant Magnetoresistance in a Metal–Organic Semiconductor–Metal Structure

Abstract

The article presents the results of investigation of the giant magnetoresistance effect in a magnetic metal–organic semiconductor–non-magnetic metal structure with a magnetoresistive coefficient of ~2600%. The influence of a magnetic field on the concentration and mobility of charge carriers and the ferromagnetic–polymer potential barrier is studied. The possibility of theoretical interpretation of the investigated phenomenon based on a recently proposed model, which takes into account the effect of a hyperfine field on spin-dependent carrier hopping along the polymer chain, is considered.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, Chem. Phys. Lett. 380, 710 (2003).

    ADS  Article  Google Scholar 

  2. 2

    T. L. Francis, O. Mermer, G. Veeraraghavan, and M. Wohlgenannt, New J. Phys. 6, 185 (2004).

    ADS  Article  Google Scholar 

  3. 3

    V. Prigodin, J. Bergeson, D. Lincoln, and A. Epstein, Synth. Met. 156, 757 (2006).

    Article  Google Scholar 

  4. 4

    P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, Phys. Rev. B 76, 235202 (2007).

    ADS  Article  Google Scholar 

  5. 5

    B. Hu and Y. Wu, Nat. Mater. 6, 985 (2007).

    ADS  Article  Google Scholar 

  6. 6

    F. L. Bloom, W. Wagemans, M. Kemerink, and B. Koopmans, Phys. Rev. Lett. 99, 257201 (2007).

    ADS  Article  Google Scholar 

  7. 7

    F. J. Wang, H. Bassler, and Z. V. Vardeny, Phys. Rev. Lett. B 101, 236805 (2008).

    ADS  Article  Google Scholar 

  8. 8

    U. Niedermeier, M. Vieth, R. Patzold, W. Sarfert, and H. von Seggern, Appl. Phys. Lett. B 92, 193309 (2008).

    ADS  Article  Google Scholar 

  9. 9

    T. D. Nguyen, G. Hukic-Markosian, F. Wang, L. Wojcik, X.-G. Li, E. Ehrenfreund, and Z. V. Vardeny, Nat. Mater. 9, 345 (2010).

    ADS  Article  Google Scholar 

  10. 10

    T. D. Nguyen, B. R. Gautam, E. Ehrenfreund, and Z. V. Vardeny, Phys. Rev. Lett. 105, 166804 (2010).

    ADS  Article  Google Scholar 

  11. 11

    P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007).

    ADS  Article  Google Scholar 

  12. 12

    S. P. Kersten, A. J. Schellekens, B. Koopmans, and P. A. Bobbert, Phys. Rev. Lett. 106, 197402 (2011).

    ADS  Article  Google Scholar 

  13. 13

    V. A. Antipin, A. N. Lachinov, D. A. Mamykin, A. A. Kovalev, S. S. Ostakhov, and V. P. Kazakov, Khim. Vys. Energ. 44 (4), 382 (2010).

    Google Scholar 

  14. 14

    P. A. Bobbert, Nat. Mater. 9, 288 (2010).

    ADS  Article  Google Scholar 

  15. 15

    K. Schulten and P. Wolynes, J. Chem. Phys. B 68, 3292 (1978).

    ADS  Article  Google Scholar 

  16. 16

    N. V. Vorobieva, A. N. Lachinov, and A. A. Lachinov, Mol. Cryst. Liq. Cryst. 467, 135 (2007).

    Article  Google Scholar 

  17. 17

    N. V. Vorob’eva, A. N. Lachinov, A. A. Lachinov, and V. M. Kornilov, Nanotekhnologii 1 (6), 25 (2010).

    Google Scholar 

  18. 18

    A. A. Lachinov and N. V. Vorob’eva, Poverkhnost’, No. 10, 1 (2008).

  19. 19

    M. Pope and Ch. E. Swenberg, Electronic Processes of Organic Crystals (Clarendon, Oxford, 1982).

    Google Scholar 

  20. 20

    S. P. Kersten, S. C. J. Meskers, and P. A. Bobbert, Phys. Rev. B 86, 1 (2012).

    Article  Google Scholar 

  21. 21

    S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  22. 22

    N. Johansson, A. N. Lachinov, S. Stafstrom, and W. R. Salaneck, Synth. Met. 67, 319 (1994).

    Article  Google Scholar 

Download references

Funding

The work was carried out under support of the project “Mirror Laboratories” and a grant of the Federal Targeted Program no. 2019-05-595-0001-058.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. N. Lachinov.

Ethics declarations

The authors claim that there is no conflict of interest.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lachinov, A.A., Karamov, D.D. & Lachinov, A.N. Giant Magnetoresistance in a Metal–Organic Semiconductor–Metal Structure. Semiconductors 55, 202–206 (2021). https://doi.org/10.1134/S1063782621020184

Download citation

Keywords:

  • polymer conduction
  • magnetoresistance
  • metal–organic semiconductor–metal structure
  • ferromagnetic–polymer barrier
  • poly(diphenylene phthalide)