Magnetic Properties of Thin Epitaxial SiC Layers Grown by the Atom-Substitution Method on Single-Crystal Silicon Surfaces

Abstract

A cycle of experimental investigations is carried out, specifically, the measurements and analysis of field dependences of the static magnetic susceptibility in samples of single-crystal SiC thin films grown on the (100), (110), and (111) surfaces of a Si single crystal by the method of the self-consistent substitution of atoms due to the chemical reaction of silicon with carbon-monoxide (CO) gas. As a result of investigations in SiC structures grown on Si(110) and Si(111), the appearance of two quantum effects is found in weak magnetic fields at room temperature. These effects are, first, the formation of hysteresis of the static magnetic susceptibility and, second, the generation of Aharonov–Bohm oscillations in the field dependences of the static magnetic susceptibility. The first effect is associated with the Meissner–Ochsenfeld effect and the second effect, with the presence of microdefects in the form of nanotubes and micropores formed during the synthesis of structures in them under the SiC layer. In the SiC structures grown on Si(100), these effects are not detected, which is related to a different mechanism of SiC formation on the Si(100) surface.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    C. A. Kukushkin and A. V. Osipov, Phys. Solid State 50, 1238 (2008).

    ADS  Article  Google Scholar 

  2. 2

    S. A. Kukushkin and A. V. Osipov, Dokl. Phys. 57, 217 (2012).

    ADS  Article  Google Scholar 

  3. 3

    S. A. Kukushkin and A. V. Osipov, Mech. Solids 48, 216 (2013).

    ADS  Article  Google Scholar 

  4. 4

    S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014).

    ADS  Article  Google Scholar 

  5. 5

    S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56, 1507 (2014).

    ADS  Article  Google Scholar 

  6. 6

    S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 50, 464006 (2017).

    ADS  Article  Google Scholar 

  7. 7

    L. M. Sorokin, N. V. Veselov, M. P. Shcheglov, A. E. Kalmykov, A. A. Sitnikova, N. A. Feoktistov, A. V. Osipov, and S. A. Kukushkin, Tech. Phys. Lett. 34, 992 (2008).

    ADS  Article  Google Scholar 

  8. 8

    F. Iacopi, G. Walker, L. Wang, L. Malesys, S. Ma, B. V. Cunning, and A. Iacop, Appl. Phys. Lett. 102, 011908 (2013).

    ADS  Article  Google Scholar 

  9. 9

    S. A. Kukushkin and A. V. Osipov, Phys. B (Amsterdam, Neth.) 512, 26 (2017).

  10. 10

    S. A. Kukushkin and A. V. Osipov, Tech. Phys. Lett. 46, 1103 (2020).

  11. 11

    S. A. Kukushkin, A. V. Osipov, and I. P. Soshnikov, Rev. Adv. Mater. Sci. 52, 29 (2017).

    Google Scholar 

  12. 12

    V. V. Romanov, V. A. Kozhevnikov, V. A. Mashkov, and N. T. Bagraev, Semiconductors 54, 1593 (2020).

  13. 13

    N. T. Bagraev, V. Yu. Grigoryev, L. E. Klyachkin, A. M. Malyarenko, V. A. Mashkov, V. V. Romanov, and N. I. Rul’, Low Temp. Phys. 43, 132 (2017).

    Article  Google Scholar 

  14. 14

    N. T. Bagraev and V. A. Mashkov, Solid State Commun. 51, 515 (1984).

    ADS  Article  Google Scholar 

  15. 15

    N. T. Bagraev and V. A. Mashkov, Solid State Commun. 65, 1111 (1988).

    ADS  Article  Google Scholar 

  16. 16

    G. Landwehr, J. Gerschütz, S. Oehling, A. Pfeuffer-Jeschke, V. Latussek, and C. R. Becker, Phys. E (Amsterdam, Neth.) 6, 713 (2000).

  17. 17

    S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, Chichester, 1974).

  18. 18

    Y. Imry, Introduction to Mesoscopic Physics (Oxford Univ. Press, Oxford, 2008).

    Google Scholar 

  19. 19

    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Part of the investigations, precisely, synthesis of the films, was carried out using equipment of the unique scientific installation ”Physics, chemistry, and mechanics of crystals and thin films“ of the Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (St. Petersburg).

Funding

The study was supported by the Russian Science Foundation (grant no. 20-12-00193).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to N. T. Bagraev or S. A. Kukushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagraev, N.T., Kukushkin, S.A., Osipov, A.V. et al. Magnetic Properties of Thin Epitaxial SiC Layers Grown by the Atom-Substitution Method on Single-Crystal Silicon Surfaces. Semiconductors 55, 137–145 (2021). https://doi.org/10.1134/S106378262102007X

Download citation

Keywords:

  • silicon carbide on silicon
  • dilatation dipoles
  • magnetic susceptibility
  • diamagnetism
  • Aharonov–Bohm effect