The Effect of the Ionizing Radiation Intensity on the Response of MOS Structures

Abstract

The effect of the intensity of ionizing radiation on the volume charge and surface-state density of metal—oxide—semiconductor (MOS) structures with thin gate silicon dioxide is modeled. It is shown that the dependences of the surface-state density and volume charge on the total time of ionizing radiation and subsequent annealing at different ionizing-radiation intensities lie on the corresponding common curves Nit(t) and Qot(t). The Nit(t) common curve is determined by the dispersive nature of the transport of hydrogen ions Н+. The observed deviations from this Nit(t) common curve immediately after the end of ionizing irradiation are due to the transient process of the redistribution of Н+ ions. The Qot(t) common curve is determined by relaxation of the volume charge from a system of levels with energies of 0.3 to 1.0 eV by the mechanism of thermal emission. It is shown that the enhanced low-dose-rate sensitivity (ELDRS) for the MOS structures with a thick base oxide at low intensities is determined by the dispersive character of the transport of hydrogen ions Н+.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    D. M. Fleetwood, IEEE Trans. Nucl. Sci. 65, 1465 (2018).

    ADS  Article  Google Scholar 

  2. 2

    K. I. Tapero, V. N. Ulimov, and A. M. Chlenov, Radiation Effects in Silicon Integrated Circuits for Space Applications (BINOM, Moscow, 2012) [in Russian].

    Google Scholar 

  3. 3

    T. R. Oldham and F. B. McLean, IEEE Trans. Nucl. Sci. 50, 483 (2003).

    ADS  Article  Google Scholar 

  4. 4

    F. B. McLean, IEEE Trans. Nucl. Sci. 27, 1651 (1980).

    ADS  Article  Google Scholar 

  5. 5

    E. Cartier, J. H. Stathis, and D. A. Buchanan, Appl. Phys. Lett. 63, 1510 (1993).

    ADS  Article  Google Scholar 

  6. 6

    P. J. McWhorter, S. L. Miller, and W. M. Miller, IEEE Trans. Nucl. Sci. 37, 1682 (1990).

    ADS  Article  Google Scholar 

  7. 7

    V. A. Gurtov, P. A. Raikerus, and A. A. Saren, Charge Transfer in Structures with Dielectric Layers (PetrGU, Petrozavodsk, 2010) [in Russian].

  8. 8

    N. S. Saks and D. B. Brown, IEEE Trans. Nucl. Sci. 36, 1848 (1989).

    ADS  Article  Google Scholar 

  9. 9

    D. B. Brown and N. S. Saks, J. Appl. Phys. 70, 3734 (1991).

    ADS  Article  Google Scholar 

  10. 10

    D. M. Fleetwood, P. S. Winokur, and J. R. Schwank, IEEE Trans. Nucl. Sci. 35, 1497 (1988).

    ADS  Article  Google Scholar 

  11. 11

    M. R. Shaneyfelt, J. R. Schwank, D. M. Fleetwood, P. S. Winokur, K. L. Hughes, G. L. Hash, and M. P. Connors, IEEE Trans. Nucl. Sci. 39, 2244 (1992).

    ADS  Article  Google Scholar 

  12. 12

    R. L. Pease, R. D. Schrimpf, and D. M. Fleetwood, IEEE Trans. Nucl. Sci. 56, 1894 (2009).

    ADS  Article  Google Scholar 

  13. 13

    S. C. Witczak, R. C. Lacoe, D. C. Mayer, D. M. Fleetwood, R. D. Schrimpf, and K. F. Galloway, IEEE Trans. Nucl. Sci. 45, 2339 (1998).

    ADS  Article  Google Scholar 

  14. 14

    R. J. Graves, C. R. Cirba, R. D. Schrimpf, R. J. Milanowski, A. Michez, D. M. Fleetwood, S. C. Witczak, and F. Saigne, IEEE Trans. Nucl. Sci. 45, 2352 (1998).

    ADS  Article  Google Scholar 

  15. 15

    S. N. Rashkeev, C. R. Cirba, D. M. Fleetwood, R. D. Schrimpf, S. C. Witczak, A. Michez, and S. T. Pantelides, IEEE Trans. Nucl. Sci. 49, 2650 (2002).

    ADS  Article  Google Scholar 

  16. 16

    H. P. Hjalmarson, R. L. Pease, and R. A. B. Devine, IEEE Trans. Nucl. Sci. 55, 3009 (2008).

    ADS  Article  Google Scholar 

  17. 17

    J. Boch, F. Saigne, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, Appl. Phys. Lett. 88, 232113 (2006).

    ADS  Article  Google Scholar 

  18. 18

    O. V. Aleksandrov, Semiconductors 49, 774 (2015).

    ADS  Article  Google Scholar 

  19. 19

    O. V. Aleksandrov, Semiconductors 54, 1215 (2020).

    ADS  Article  Google Scholar 

  20. 20a

    J. Noolandi, Phys. Rev. B 16, 4466 (1977);

    ADS  Article  Google Scholar 

  21. 20b

    Phys. Rev. B 16, 4474 (1977).

  22. 21

    R. C. Hughes, Phys. Rev. Lett. 30, 1333 (1973).

    ADS  Article  Google Scholar 

  23. 22

    R. C. Hughes, Phys. Rev. B 15, 2012 (1977).

    ADS  Article  Google Scholar 

  24. 23

    J. M. Benedetto and H. E. Boesch, IEEE Trans. Nucl. Sci. 33, 1318 (1986).

    ADS  Article  Google Scholar 

  25. 24a

    V. I. Arkhipov and A. I. Rudenko, Philos. Mag. B 45, 189 (1982);

    ADS  Article  Google Scholar 

  26. 24b

    Philos. Mag. B 45, 209 (1982).

  27. 25

    S. R. Hofstein, IEEE Trans. Electron Dev. 14, 749 (1967).

    ADS  Article  Google Scholar 

  28. 26

    J. J. Tzou, J. Y.-C. Sun, and C.-T. Sah, Appl. Phys. Lett. 43, 861 (1983).

    ADS  Article  Google Scholar 

  29. 27

    R. J. Krantz, L. W. Aukerman, and T. C. Zietlow, IEEE Trans. Nucl. Sci. 34, 1196 (1987).

    ADS  Article  Google Scholar 

  30. 28

    H. E. Boesch, F. B. McLean, J. M. Benedetto, and J. M. McGarrity, IEEE Trans. Nucl. Sci. 33, 1191 (1986).

    ADS  Article  Google Scholar 

  31. 29

    A. J. Lelis, T. R. Oldham, H. E. Boesch, and F. B. McLean, IEEE Trans. Nucl. Sci. 36, 1808 (1989).

    ADS  Article  Google Scholar 

  32. 30

    O. V. Aleksandrov, Semiconductors 54, 233 (2020).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. V. Aleksandrov.

Ethics declarations

The author declares that there is no conflict of interest.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, O.V. The Effect of the Ionizing Radiation Intensity on the Response of MOS Structures. Semiconductors 55, 207–213 (2021). https://doi.org/10.1134/S1063782621020068

Download citation

Keywords:

  • ionizing radiation
  • MOS structure
  • surface states
  • volume charge
  • dispersive transport
  • modeling